ET 151 Circuits 1


ET151 CIRCUITS I C 3, P 2, CR 4

The fundamentals of DC circuit analysis are introduced. This includes the definition of various electrical quantities and their relationships. Topics include series and parallel circuits, Kirchhoff's Laws, Thevenin's Theorem, Norton, superpositioning, maximum power transfer and nodal and mesh analysis. Proper usage of laboratory equipment is stressed.

Corequisites: ET153 Introduction to Electronics, MA121 Fundamentals of College Mathematics, or permission of the instructor.


Texts: Introductory Circuit Analysis 12E, R. Boylestad Prentice Hall Publishing Company
Tools: A scientific calculator with trig, exponential and polar to rectangular functions, preferably with simultaneous equation solution capability; small hand tools such as a wire stripper, small screwdriver, long nose pliers, and an electronic breadboard.

Laboratory Manual for DC Electrical Circuits (pdf)

Workbook for DC Electrical Circuits (pdf)


The student will demonstrate a firm understanding of the behavior of DC electrical circuits.

The student will demonstrate analytical skills and insights that will be expanded and applied to more advanced circuits encountered in later courses.

The student will use a mathematical and problem solving approach for introductory circuit analysis, based on fundamental DC circuit principles and math concepts. This will include the use of computer simulations.

The student will demonstrate facility at constructing and trouble shooting basic DC circuits in the laboratory with proper use of test equipment.

The student will demonstrate the command of appropriate communication skills, particularly technical reports through the laboratory.

The student will demonstrate the ability to work as part of a technical team, particularly in the laboratory.

Course Assessment Standards



Success in this course requires a good working knowledge of algebra. This is an introductory course, and as such, it assumes that you know very little about electricity. No previous course work in electricity or electronics is required. Basic electrical concepts such as voltage, current, power, and resistance are introduced and examined for DC (direct current). Fundamental laws and relationships such as Ohm's Law and Power Law are developed. Analysis techniques include series-parallel simplification, Thevenin's, Norton's, and Superposition Theorem, and Mesh and Nodal Analysis. This is one of the most important courses you will take in the electrical sequence because it creates the foundation for all of the others. It is virtually impossible to be successful in this program without mastery of the material presented in this course. Treat it appropriately. A good scientific calculator with simultaneous equation solution capability will be of great use and is strongly recommended. Further, smart devices will not be allowed during tests. For lab, you'll need the standard array of goodies as used throughout this program (breadboard, DMM, small handtools, hook-up leads, etc.) Unless otherwise specified, all lab exercises require a technical report due no later than one week after the exercise. Late penalty is one letter grade for the first half week, two letter grades for the second half week. Reports are not accepted beyond two weeks and receive a grade of 0. Remember, plagiarism is grounds for failure.

Link to the Boylestad website for more info, self-test materials, etc.

An on-line resource covering a variety of electrical circuit topics and reference material may be found at: Check out my home page for free circuit simulators and other OER (Open Educational Resources).

Week-by-week progress and assignments (note that the Problems are found in the Workbook, not the text)


An introduction to units, conversions, and measurement schemes. This is very important background material. Chapter 2 then introduces some basic electrical quantities and properties.

  • Reading: Chapter 1 and first half of chapter 2. Read the first five sections on the scientific method, facts & theories, logical fallacies, scientific notation and the metric system in these lecture notes.
  • Problems: Section 1: 1, 3, 5, 7, 9, 11, 13, 15, 17, 28, 29, 30, 57. 
  • Lab: We start the semester with proper lab safety procedures, then we'll review mathematical operations and scientific calculator procedures. The first lab is The Electrical Laboratory

This week we define conductors, insulators, and semi-conductors. We also look at DC power supplies and some basic interrelationships such as Ohm's Law and introduce the concept of resistance.

  • Reading: Finsh chapter 2 and start chapter 3.
  • Problems: Section 1: 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51.
  • Lab: DC Sources and Metering

We continue with the interrelationships and examine the concepts of energy and efficiency, as well as Power Law.

  • Reading: Finish chapter 3 and begin chapter 4.
  • Problems: Section 1: 19, 21, 23, 25.Try the intro worksheet/self-test
  • Lab: Resistor Color Code

We finish energy and power calculations by mid-week. Once chapter 4 is finished, we will have our first test. We then launch in on chapter 5, which covers series circuits. Make sure that you at least read over the first few chapter sections before reading the lab exercise.

  • Reading: Finish chapter 4. After the test, start on chapter 5.
  • Problems: Section 1: 53, 55. Section 2: 1, 3, 5, 7, 9, 11.
  • Lab: Ohm's Law

This week we start putting a few things together and form the simplest sort of circuits: series circuits. We also begin an examination of parallel circuits.

  • Reading: Complete chapter 5 and begin chapter 6.
  • Problems: Section 2: 13, 15, 19, 21, 23, 25, 29, 31, 35, 37, 39, 43, 49, 59. Section 3: 1, 3, 5, 7, 9.
  • Lab: Series DC Circuits

We continue with parallel circuits and by week's end, we introduce the combination series-parallel circuit in it's most basic forms. There are an infinite variety of series-parallel circuits. Do not attempt to memorize pat solution forms. Doing so will only get you into trouble later.

  • Reading: Complete chapter 6 and begin chapter 7.
  • Problems: Section 3: 11, 15, 17, 19, 27, 29, 31, 35, 37. Section 4: 1, 5, 13.
  • Lab: Parallel DC Circuits

We finish our work with basic series-parallel circuits (although we are by no means done with the topic-there are numerous circuits that will require the more sophisticated techniques presented shortly). At this point, we will have our second test.

  • Reading: Finish chapter 7.
  • Problems: Section 4: 19, 25, 29, 39, 41, 45, 53, 61, 67, 76, 78. Try the first couple of problems on the series-parallel worksheet.
  • Lab: Seies-Parallel DC Circuits

The next four or so weeks will involve examination of various theorems and solution techniques. If you haven't already done so, make sure that you read through your calculator's manual and learn how to perform simultaneous equation solutions. We do chapter 9 before 8 in order to align the simulataneous equations material with math class (MA121). We begin our work with current source conversions and lead directly into theorems in chapter 9, including Thevenin's Theorem and Superposition Theorem. Note that superposition requires that the circuit be linear, thus non-linear circuits (such as those that exhibit saturation or rectification) cannot be solved using superposition. This is often forgotten by the beginning student.

  • Reading: First part of chapter 8 on source conversions, then chapter 9. Read the Source Conversions Proof
  • Problems: Section 5: 1, 3, 5, 9, 10, 11, 13,  15, 17, 23, 39, 45, 49. Try the final couple of problems (Superposition) on the series-parallel worksheet.
  • Lab: Ladders and Bridges

Norton's Theorem, Maximum Power Transfer Theorem, and Millman's Theorem round out our discussion of theorems. At week's end we introduce branch current analysis (BCA) from chapter 8.


Continuing in chapter 8, we introduce mesh analysis and nodal analysis. Some people prefer nodal over mesh. Some people prefer mesh over nodal. Either one can be used to solve a given circuit, however, you may find that the solution of a given circuit is easier or faster using one technique in favor of the other. Time and practice will bear this out.

  • Reading: Finish chapter 8.
  • Problems: Section 6: 1, 3, 9, 13, 17, 21, 23, 25, 29, 43, 46, 47, 51. Work on the mesh-nodal worksheet.
  • Lab: Superposition Theorem 

We finish any remaining details on network analysis and theorems. Once we finish up, we begin a discussion of capacitors.

  • Reading: Begin chapter 10.
  • Problems: Section 6: 55, 56, 58, 61, 67, 73. Section 7: 1, 2, 3, 4.
  • Lab: Thevenin's Theorem

We continue with capacitance and at week's end, introduce transient response.

  • Reading: Complete chapter 10.
  • Problems: Section 7: 9, 15, 23, 27, 29, 31.
  • Lab: Maximum Power Transfer

The discussion of RC circuits concludes this week and we introduce inductors.

  • Reading: Start chapter 11.
  • Problems: Section 7: 31, 33, 35, 47, 49, 51, (midweek) 5, 6, 7, 8, 13.
  • Lab: Mesh Analysis


RL circuits concludes our discussion for the semester. Time permitting, we have our last in-class test.

  • Reading: Finish chapter 11.
  • Problems: Section 7: 19, 25, 37, 39, 41, 45, 53.
  • Lab: Capacitors and Inductors


Workbook for DC Electrical Circuits (pdf)

Workbook for DC Electrical Circuits (odt)

Lecture Notes on the Scientific Method, Logic and the Metric System

Intro Worksheet

Series-Parallel Worksheet

Source Conversions Proof

Maximum Power Transfer Proof

Delta-Y Conversions Proof

Series-Parallel and More Self Test

Simultaneous Equations Notes

Mesh-Nodal Worksheet

Magnetic Circuit Worksheet


Laboratory Manual for DC Electrical Circuits (odt)

Laboratory Manual for DC Electrical Circuits (pdf)

[Home] [MVCC Home]

2017 Jim Fiore