ET 262 Operational Amplifiers


ET262 Operational Amplifiers C 3, P 2, CR 4

This course includes further study of linear transistor circuits. Examination of frequency response and negative feedback are of prime importance. Operational amplifiers are discussed in great depth, including applications in summing, precision rectifying, voltage regulation, filtering, and other popular circuit applications. Usage of digital computers for analysis and design is discussed.

Prerequisites: ET161 Linear Electronics or permission of instructor.


Text: Operational Amplifiers & Linear Integrated Circuits/3E, Fiore (pdf)

Lab Manual: Lab Manual for Operational Amplifiers & Linear Integrated Circuits/3E, Fiore (pdf) 

Tools: Scientific calculator, electronic hand tools and breadboard


The student will demonstrate knowledge of analog electrical devices, particularly operational amplifiers and their applications.

The student will be able to utilize items such as decibels, Bode plots, and negative feedback for circuit analysis.

The student will use a mathematical and problem solving approach for design and analysis, based on fundamental DC and AC circuit principles and math concepts. This will include the use of computer simulations.

The student will demonstrate facility at constructing and trouble shooting op amp circuits in the laboratory with proper use of test equipment.

The student will demonstrate appropriate communication skills, particularly technical reports through the laboratory.

The student will demonstrate the ability to work as part of a technical team, particularly in the laboratory.

Course Assessment Standards



Success in this course requires a good working knowledge of the theorems presented in ET 151 Circuits 1, and the amplifier concepts covered in ET 161 Linear Electronics. Math level is mostly algebra, although some equation proofs do require differential and/or integral calculus. Smart devices will not be allowed during tests. For lab, you'll need the standard array of goodies as used in ET151 Circuits 1 and ET161 Linear Electronics (breadboard, DMM, small handtools, hook-up leads, etc.) Unless otherwise specified, all lab exercises require a technical report due no later than one week after the exercise. Late penalty is one letter grade for the first half week, two letter grades for the second half week. Reports are not accepted beyond two weeks and receive a grade of 0. Remember, plagiarism is grounds for failure.

 Free on-line resources covering a variety of electrical circuit topics and reference material may be found at: and, in particular, check out this extensive free e-book that covers everything from basic semiconductor theory through diodes, transistors, amplifiers, modulation, power electronics and digital electronics, in nearly 800 pages. Here are some free e-books from manufacturers: TI's Handbook of Operational Amplifier Applications, Analog Devices' Op Amp Applications Handbook and Analog Devices' Linear Circuit Design Handbook. The Analog Devices series of On-line Tutorials is also useful. A handy chart of various op amp circuit configurations can be found hereSee the home page for free circuit simulators.

Week-by-week progress and assignments


We begin with an introduction to decibels and Bode plots, something we're going to be using for the rest of the semester.

  • Reading: First half of chapter 1. Here is a pdf of 3 cycle semi log paper.
  • Problems: 1, 3, 7, 9, 11, 15, 23, 25, 27, 29.
  • Lab: As always, we start the semester with proper lab safety procedures. Our first exercise will be Decibels and Bode Plots.

This week we complete our study of Bode plots and introduce the differential amplifier. Differential amplifiers comprise the first stage of most op amps.

  • Reading: Finish chapter 1.
  • Problems: 31, 33, 39, 43, 45, 47, 53.
  • Lab: The Differential Amplifier.

We finish diff amps and delve into the inner workings of a typical op amp.

  • Reading: Chapter 2.
  • Problems: 1, 3, 5, 9, 11, 13.
  • Lab: The Op Amp Comparator.

The concept of negative feedback is introduced. This is a very important topic. There are four basic forms or connections, and we will focus our attention on the two most popular types (series-parallel and parallel-parallel).

  • Reading: Chapter 3.
  • Problems:  1, 3, 7, 13, 15, 19.
  • Lab: The Non-inverting Voltage Amplifier.

This week we examine some basic op amp circuits including summing amplifiers, single-supply biasing, and current-boosting. Once we finish this section, we'll have our first test.

  • Reading: Chapter 4.
  • Problems: 1, 5, 7, 9, 11, 15, 18, 23, 27, 33, 35, 43.Try the Op Amp Practce 1 work sheet.
  • Lab: The Inverting Voltage Amplifier.

Up to now, the op amp has been treated as a fairly ideal device. We now spend some time looking at the practical limitations of op amp circuits including frequency response, slew rate, offsets, drift, and noise.

  • Reading: First half of chapter 5.
  • Problems: 1, 3, 5, 7, 13, 23, 27, 29,
  • Lab: Parallel-Series and Series-Series Negative Feedback.

We continue with the practical limits of op circuits.

  • Reading: Finish chapter 5.
  • Problems: 17, 19,  23, 31, 35, 38. Try the first three problems on the Op Amp Practice 2 work sheet.
  • Lab: Gain-Bandwidth Product.

This week we look at a collection of special purpose op amps including those designed for high power, high current, and high voltage applications, as well as high speed video op amps, OTAs, and Norton amplifiers. This section tends to move rather quickly, and by week's end we'll be looking at non-linear applications such as precision rectifiers.

  • Reading: Chapter 6, and begin chapter 7.
  • Problems: Chapter 6: 1, 5, 9, 11, 13, 19, 23. Chapter 7: 1, 3, 5.
  • Lab: Slew Rate and Power Bandwidth.

We continue with non-linear applications including function approximators. Function approximators (AKA function generators or synthesizers) can be used to correct for transducer non-linearity or to force a waveform into a new shape (such as turning a triangle wave into a sine wave). When this section is completed, we'll have a test.


Voltage regulation is an extremely useful function, so there should be no surprise at the wide range of regulators on the market. We begin with some simple linear regulators and work up to switching regulators.

  • Reading:  Begin chapter 8.
  • Problems: 1, 3, 7, 11, 13, 17. 
  • Lab: Precision Rectifiers.

After finishing off regulation, we pick up with oscillators and frequency generators.

  • Reading: Finish chapter 8 and begin chapter 9.
  • Problems: Chapter 8: 19. Chapter 9: 1, 5, 7, 9, 15, 31, 37, 39. Try the final problem on the Op Amp Practice 2 work sheet.
  • Lab: The Linear Regulator.

We begin the study of active filters. We will look at several popular forms and applications. This will be more of an overview since a thorough examination of the topic could easily take an entire semester.

  • Reading: Begin chapter 11.
  • Problems: 1, 5, 7, 13, 15, 17, 21, 25, 27. Try the final problem on the Op Amp Practice 3 work sheet.
  • Lab: The Triangle-Square Generator.

We complete our look at active filters and begin a discussion of analog-to-digital and digital-to-analog conversion.

  • Reading: Finish chapter 11 and begin chapter 12.
  • Problems: Chapter 11: 33, 37. Chapter 12: 1, 3, 5, 7,  9, 11.
  • Lab: VCVS Filters.


A/D and D/A conversion and applications are finished this week. If time permits, we'll have our last test.

  • Reading: Finish chapter 12.
  • Problems: 17, 19, 21.
  • Lab: The State-Variable Filter or The Multiple Feedback Filter.


Text, OER: Operational Amplifiers and Linear Integrated Circuits/3E (pdf)

Text, OER: Operational Amplifiers and Linear Integrated Circuits/3E (odt)

Lab Manual, OER: Lab Manual for Operational Amplifiers & Linear Integrated Circuits/3E (pdf) 

Lab Manual, OER: Lab Manual for Operational Amplifiers & Linear Integrated Circuits/3E (odt) 

3 Cycle Semi-Log Paper (pdf)

Op Amp Practice 1 Worksheet

Op Amp Practice 2 Worksheet

Op Amp Practice 3 Worksheet

[Home] [MVCC Home]

2017 Jim Fiore