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Scientific Method

The scientific method is a means of uncovering and explaining physical phenomena. It 
relies on observation and logical reasoning to achieve insight into the actions and 
relations of the phenomena, and a means of relating it to similar items. The method starts 
with observations and measurements. Based on these and background knowledge such as 
mathematics, physics, the behavior of similar phenomena, and so on, a tentative 
explanation, or hypothesis, is derived. The hypothesis is then tested using experimental or
field data. The precise nature of the tests depend on the area of study, but the idea will 
always be the same: namely to see if the predictions of the hypothesis are borne out under
alternate applicable conditions or data sets. A proper hypothesis must be testable and 
falsifiable. That is, the hypothesis must be able to be proven wrong by subsequent 
observation. If it is not, then the hypothesis is better classified as philosophy. For 
example, Newtonian gravitation could be proven false by letting go of a suspended 
hammer and watching it remain motionless or fall upwards, rather than fall down toward 
the Earth. Similarly, Evolution could be proven false by the discovery of “fossil rabbits in
the Precambrian”, to quote famous biologist J. B. S. Haldane (Haldane was being 
somewhat snippy, but in general, he meant anything that would be clearly out of the 
expected time-line, in this case a small mammal predating even the most simple creatures
with backbones). 

A hypothesis is tested by repeated cycles of prediction, observation and measurement, 
and also subject to peer review, that is, the critique of others in the field of study who 
may point out inconsistencies in the explanations or logic, errors in experimental design, 
and so on. This cycle continues until the weight of data and scientific opinion elevates the
hypothesis to a theory. One might say that a theory is a hypothesis that has withstood the 
rigors of the scientific method. This cycle was well expressed by the Marquise du 
Châtelet1. She explained hypotheses as “probable propositions”. While it would only take
one observation to falsify a hypothesis, several would be required to vindicate it: “each 
non-contradictory result would add to the probability of the hypothesis and ultimately…
we would arrive at a point where its ‘certitude’ and even its ‘truth’, was so probable that 
we could not refuse our assent”. 

It is important to note that the scientific usage of the word theory is entirely different 
from its popular usage, which is perhaps closer to “hunch” or “seat-of-the-pants guess”. 
Also, a scientific theory is not true in the same sense as a fact. Facts come in three main 
varieties: direct and indirect observations; and those that may be logically deduced. A 
direct observation is something that you have measured yourself, such as noting the time 

1 Du Châtelet was that most rare of 18th century women: a mathematician and physicist. She translated 
Newton’s Principia Mathematica into French and was also the lover of Voltaire. Unfortunately, after an 
affair with the poet Jean François de Saint-Lambert in her early 40’s, she became pregnant and died six 
days after giving birth.



it takes for a ball to reach the ground when released from a given height. An indirect 
observation is something that may be inferred from other known quantities or proper 
historical data, such as “George Washington was the first president of the United States 
of America”. An example of the third variety would be “If x is an even integer larger than
four and smaller than eight, then x must be six”. At first glance, it may seem that facts are
highest on the pecking order, but scientific theories are much more useful than facts 
because isolated facts have very little predictive capacity. It is the predictive and 
explanatory ability of theories that make them so powerful.

So a theory is a “best estimate so far”, a model to explain some observable aspect of the 
universe. It is understood that as our view of what is observable widens and our 
knowledge extends, so too a given theory may be refined. A good example is Newtonian 
Gravitation. This model was sufficient to describe the movements of the planets around 
the sun and is still used to plan the flight of space craft. In the early 1900’s, however, 
Einstein’s Theory of Relativity refined Newtonian Gravitation to include more extreme 
(relativistic) effects. It is important to note that we did not “throw out” Newton’s 
equations; rather, we now have a better understanding of the set of conditions under 
which they apply. While this trek towards more and more refinement is not truth in and 
of itself, to paraphrase the late Harvard paleontologist, Stephen Jay Gould, to ignore the 
weight of scientific data behind an established theory would be perverse.

Scientific Notation

In any effort to reduce the cumbersome nature of very large and very small numbers, 
scientists and engineers use scientific notation. This removes the problem of excessive 
leading and trailing zeroes. For example, consider the value 17,000,000,000,000. It might
take you a moment to note that this is commonly referred to as “17 trillion”. Similarly, it 
takes more than a few seconds to see that .0000000032 is “3.2 billionths” or even “32 
ten-billionths”. As scientists and engineers use very large and very small numbers 
frequently, keeping track of all of those zeroes can be a pain and a source of error. With 
scientific notation, a number is expressed as two parts: first a mantissa, or “precision 
part”, and secondly an exponent which tells you the magnitude or “scale of largeness”. 
The exponent is basically a power to which the number 10 is raised. You can also think 
of it as the number of zeroes trailing. The first example, 17,000,000,000,000 would be 
written as 17 times 10 to the 12th power, or 17 times 1012. Note that there are 12 trailing 
zeroes. The value 5,600,000,000 could be written as 56 times 108, noting the 8 trailing 
zeroes. It could also be written as 5.6 times 109. (If the power of 10 is a multiple of 3, that
is, it corresponds to one of those place-holding commas; we call it engineering notation- 
more on this in a moment.) Continuing, if you imagine moving the decimal point of .
0000000032 to the right, you’d move it 9 times to get between the 3 and 2. This would be
3.2 times 10-9, the negative power indicating a shift right rather than left (i.e., smaller than
1). This value may be written as 32 times 10-10 as well. On a normal scientific calculator, 
there is a further shortcut: The exponent button, which is typically labeled E, EXP or EE. 
So, to enter the last example, you’d type in 3.2E-9 or 3.2EE-9 or 3.2EXP-9. (For 
consistency, we will always use a single E for descriptions from here on.)



Certainly, it is much more compact and less prone to transcription error to write 4.32 
times 10-9 than .00000000432 (and better still to use 4.32E-9); but, there is an even better 
reason to use this form, and that’s when multiplying or dividing values. 

1. When multiplying two values in scientific notation, multiply the two mantissas (the 
precision parts) and then add the exponents. For example, 3.2E9 times 2E-3 is 6.4E6. 
You can probably do that in your head whereas 3,200,000,000 times .002 may not be so 
obvious.

2. When dividing two values in scientific notation, divide the two mantissas and then 
subtract the exponents. For example, 3.2E9 divided by 2E-3 is 1.6E12 (remember, 
subtracting a negative three is the same as adding a positive three).

To further simplify, we give names to powers that are multiples of three:

109 Giga (billions) Use the letter G as a shortcut
106 Mega (millions) Use the letter M as a shortcut
103 Kilo (thousands) Use the letter K as a shortcut
10-3 milli (thousandths) Use the letter m as a shortcut
10-6 micro (millionths) Use the letter µ (the Greek letter mu) as a shortcut
10-9 nano (billionths) Use the letter n as a shortcut

So, for our earlier example of .0000000032, we can say 3.2n (3.2 nano, or 3.2E-9 or 3.2 
times to 10-9). We then apply these prefixes to whatever it is we are measuring. If we are 
measuring distance, we’d use meters (1 meter is approximately 39.37 inches). If it’s sort 
of far, like the Boilermaker Road Race, we’d use kilometers. The Boilermaker is 15k, or 
15,000 meters (about 9.3 miles). If the distance is fairly small, like the parameters of an 
integrated circuit chip, we might use micrometers (millionths of a meter). If you want to 
impress your friends, run the Boilermaker and tell them that you just ran 15 times 109 
micrometers!



Science!


