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IntroductionIntroduction

Welcome to the AC Electrical Circuit Analysis, an open educational resource (OER). The goal of this text is to 
introduce the theory and practical application of analysis of AC electrical circuits. It assumes familiarity with DC

circuit analysis. If you have not studied DC circuit analysis, it is strongly recommended that you read the 
companion OER text, DC Electrical Circuit Analysis before continuing. Both texts are offered free of charge 
under a Creative Commons non-commercial, share-alike with attribution license. For your convenience, along 
with the free pdf and odt files, print copies are available at a very modest charge. Check my web sites for links.

This text is based on the earlier Workbook for AC Electrical Circuits, which it replaces. The original expository 
text has been greatly expanded and includes many examples along with computer simulations. For the 
convenience of those who used the Workbook, many of the problem sets are the same, with some re-ordering 
depending on the chapter.

If you are already familiar with DC Electrical Circuit Analysis, the format of this title is similar. This text picks 
up where the DC text leaves off; beginning with AC concepts such as sinusoidal waveforms, basic Fourier 
decomposition of complex waveforms, complex numbers and the like. Also, reactance and impedance are 
introduced along with phasor diagrams. Chapters on series, parallel and series-parallel RLC circuits commence. 
Following these, network theorems along with nodal and mesh analysis are discussed for the AC case. The text 
completes with chapters on AC power, resonance, and introductions to polyphase systems and magnetic circuits. 
Each chapter begins with a set of learning objectives and concludes with practice exercises that are generally 
divided into four major types: analysis, design, challenge and simulation. Many SPICE-based circuit simulators 
are available, both free and commercial, that can be used with this text. The answers to most odd-numbered 
exercises can be found in the Appendix. A table of standard resistor sizes is also in the Appendix, which is useful
for real-world design problems. If you have any questions regarding this workbook, or are interested in 
contributing to the project, do not hesitate to contact me.

This text is part of a series of OER titles in the areas of electricity, electronics, audio and computer 
programming. It includes three other textbooks covering semiconductor devices, operational amplifiers, and 
embedded programming using the C language with the Arduino platform. There is a text covering DC electrical 
circuits similar to this one, and also seven laboratory manuals; one for each of the five texts plus individual titles
covering computer programming using the Python language, and the science of sound. The most recent versions 
of all of my OER texts and manuals may be found at my MVCC   web site as well as my mirror site: 
www.dissidents.com 

This text was created using several free and open software applications including Open Office, Dia, SciDAVis, 
and XnView.

Special thanks to the following individuals for their efforts in reviewing and proofreading the DC and AC 
Electrical Circuit Analysis texts: Glenn Ballard, John Markham, João Nuno Carvalho, Mark Steffka and Jim 
Noon.
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For the Have-nots and the Has-beens 



“Well, the people, I would say. There is no patent. Could you patent the sun?”

— Jonas Salk, inventor of the polio vaccine,
when asked who owns the patent to it.
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1 1 FundamentalsFundamentals

1.0 Chapter Learning Objectives1.0 Chapter Learning Objectives

After completing this chapter, you should be able to: 

• Describe sinusoidal waveforms in mathematical terms.
• Express complex waveforms using basic Fourier analysis.
• Perform mathematical operations using complex numbers.
• Draw phasor diagrams for complex numbers.
• Compute and plot capacitive and inductive reactance as a function of frequency.
• Compute and plot complex impedance as a function of frequency.
• Describe the relationships between resistance, reactance, impedance, conductance, susceptance and 

admittance

1.1 Introduction1.1 Introduction

In this chapter we begin our study of alternating current, or AC, electrical circuit analysis. As such, this chapter 
is filled with foundational material that will be used in the remainder of this text. It is critical that the concepts 
presented here be fully understood in order to achieve success in later chapters. We start with the mathematical 
description of the most simple AC waveform, the sine wave. This includes parameters such as amplitude, 
frequency, period, phase and DC offset. From there we discover how to describe other waveforms in terms of 
combinations of sine waves, and also how to determine the effective, or DC equivalent, value of a sine wave. AC

analysis is practically impossible to perform without the use of complex numbers, and discussion follows with 
their description and proper manipulation. Finally, we introduce the concepts of reactance and impedance, and 
how they relate to resistance. This includes examination using both frequency domain plots and phasor 
diagrams. Phasor diagrams are vector plots and can be used to show the relationships between various voltages 
in a circuit, as well as between currents or resistive/reactive values.

Many of the topics in this text will echo your studies in DC circuit analysis, such as Ohm's law, Kirchhoff's 
voltage and current laws, series-parallel analysis, nodal analysis, and the like. Thus many concepts will be 
familiar. The major practical difference is that all quantities in DC systems are scalars, that is, they have only 
magnitude. In contrast, AC quantities are vectors, and thus have both magnitude and direction (or more properly,
phase). Consequent;y, mathematical operations such as addition or multiplication have to follow vector rules 
instead of scalar rules. Forgetting to do so is a common error for students new to the subject and one that will 
bring no end of grief. These rules will be reviewed in the section covering complex numbers. Make sure that 
you have this material mastered before proceeding. 
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1.2 Sinusoidal Waveforms1.2 Sinusoidal Waveforms

AC, or alternating current, is so named because the current alternates or flips back 
and forth between two polarities. In other words, the current (and consequently the 
voltage) is a function of time. This is fundamentally different from direct current that
is fixed in polarity and generally constant over time. A laboratory DC voltage source,
for example, ideally maintains a set voltage across its terminals and does not vary 
over time. In contrast, as an AC waveform swings back and forth through time, its 
shape can exhibit wide variations ranging from the simple, regular paths of 
laboratory standards such as sine waves, triangle waves and square waves, to the far 
more complex and undulating waveforms produced by musical instruments and the 
human voice. 

The sine wave is the simplest wave that may be created. It represents the motion of a
simple vector rotating at a constant speed, such as the vertical displacement of the 
second hand of a clock. An example is shown in Figure 1.1. The horizontal axis plots
time. It increases as we move from left to right (i.e., if point A is to the right of point 
B, then A occurs later in time than does B). The vertical axis is represented here in 
general as a percentage of maximum but would ordinarily be a measurement of 
voltage, current, sound pressure, or the like. 

Note the smooth variation that starts at zero, rises to a positive peak one quarter way 
through, falls back to zero when halfway through, continues to a negative peak three
quarters through, and then rises again to where it started. This process then repeats. 
Each repeat is referred to as a cycle. In Figure 1.1, one complete cycle is shown. 
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Figure 1.1
A sine wave.
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Sine waves exhibit quarter wave symmetry. That is, each quarter (in time) of the 
wave is identical to any other if you simply flip it around the horizontal axis and/or 
rotate it upright about its peak. The time it takes to complete one cycle is called the 
period and is denoted with the symbol T (for Time). The reciprocal of the period is 
the frequency, f. 

 f =
1
T

(1.1)

The frequency indicates how many cycles exist in one second. To honor one of the 
19th century researchers in the field, instead of calling the unit “cycles per second”, 
we use Hertz, named after Heinrich Hertz and abbreviated Hz. In Figure 1.2 three 
sine waves are shown with different frequencies; the initial wave (green), a wave at 
twice the frequency (blue), and a third at half the frequency or twice the period (red).

The amplitude (vertical) of the wave can be expressed as a peak quantity, which is 
the change from the center zero line up to the most positive value. Amplitude may 
also be expressed as peak-to-peak; the distance from the most negative to the most 
positive. For a sine wave this will always be twice the peak value, although that 
might not be the case for other waves which may be asymmetrical. A series of three 
sine waves with differing amplitudes are shown in Figure 1.3. Along side the initial 
(green) are double amplitude (blue) and half amplitude (red) versions. 
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Variation in Frequency
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Figure 1.2
Sine wave frequency variation.

https://en.wikipedia.org/wiki/Heinrich_Hertz


Combining these parameters, consider the voltage waveform shown in Figure 1.4. 
Here we see two cycles of an AC voltage waveform. 
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Variation in Amplitude
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Figure 1.4
Basic sine wave example.
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The peak value is 4 volts and the peak-to-peak value is 8 volts (typically abbreviated
as “8 V pp”). The period of one cycle is 0.2 seconds, or T = 200 milliseconds. 
Further, the frequency, f = 1/200 milliseconds, or 5 Hz (5 cycles in one second). 

AC waveforms may also be combined with a DC offset. Adding a positive DC level 
shifts the wave up vertically, while a negative DC level shifts the wave down 
vertically. This does not alter the frequency or AC portion of the amplitude (although
the absolute peaks would shift by the DC value). Figure 1.5 shows the effect of 
various DC offsets. Above the initial wave (green) is an otherwise identical wave 
with a positive DC offset equal to 20% of the original peak value (blue). Below the 
original is a third wave (red) that exhibits a negative DC offset equal to half of the 
peak value of the original.

Further, it is possible for a sine wave to be shifted in time compared to some other 
sine wave or reference. While it is possible to indicate this shift as an absolute time, 
it is more common to do so as a phase shift, that is, the time expressed as a portion 
of the period in degrees. For example, if one sine is ahead of another by one quarter 
of the period, it is said to be leading by 90° (i.e., ¼ of 360°). If it is behind by 
½ of the period, it is said to be lagging by 180° (i.e., later in time by ½ cycle). 
Another way of stating this is that leading waveforms start earlier in time and thus 
are drawn to the left of the reference, while lagging waveforms start later in time and
are drawn to the right.
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Effect of DC Offset
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Figure 1.5
Sine wave DC offset variation.



Figure 1.6 illustrates the effect of phase shift. Note that in this plot, t = 0 has been 
moved to the center of the horizontal axis. The middle curve is the initial, or 
reference, wave (green). To the left (red) is a wave leading the initial wave by one-
eighth cycle, or 45°. To the right (blue), is a lagging wave of half as much, or 
−22.5°.

Combining the foregoing elements allows us to develop a general format for a sine 
wave (voltage shown):

v(t )=V DC +V P sin(2π f t +θ) (1.2)

Where 
v(t) is the voltage at some time t,
VDC is the DC offset, if any,
VP is the peak value,
f is the frequency,
θ is the phase shift (+ if leading and drawn to the left, − if lagging and drawn
to the right).

For a quick and practical example, the waveform shown in Figure 1.4 has an 
amplitude of 4 volts peak, a frequency of 5 Hz, and no DC offset or phase shift. 
Thus, its expression is v (t )=4sin(2 π5 t )

15

Effect of Phase Shift
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To compute a phase shift, first determine the time differential between the waveform
and the reference, which we'll call Δt. The reference may be a fixed point in time 
(e.g., t = 0) or another waveform. Generally, the easy way to do this is to measure 
the difference at the zero-crossings, assuming there is no DC offset. If there is an 
offset, make the measurement where the zero crossing has been shifted to (i.e., at the
DC offset level). Once the difference is found, divide it by the period to represent the
shift as a fraction of a period. As one cycle represents one rotation of the vector, or 
360 degrees, simply multiply the fraction by 360 degrees to find the phase shift in 
degrees. Expressed as a formula:

θ = 360°
Δt
T

(1.3)

Remember, if the wave is shifted to the left then it is leading and positive, while a 
shift to the right is lagging or delayed in time, and thus negative.

Example 1.1

Write the expression for the waveform shown in Figure 1.7.

 This waveform superficially may look like the one in Figure 1.4 but don't 
let this fool you. First of all, the time scale is different. For this waveform, 
one cycle completes in 10 milliseconds. Therefore, the frequency is
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Figure 1.7
Waveform for Example 1.1.
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f =
1
T

f =
1

10 ms
f = 100 Hz

The second issue is the DC offset. Note that the positive peak occurs at 4 
amps while the negative peak occurs at −2 amps. This indicates a peak-to-
peak value of 6 amps. Without an offset, the positive peak would be at 3 
amps, therefore there is a +1 amp DC offset. The vertical center of the 
waveform is shifted up from 0 amps to +1 amp. This point is at t = 0, 
therefore, there is no phase shift. The resulting expression is:

i(t )=1+3sin(2 π100 t )

Example 1.2

Write the expression for the waveform shown in Figure 1.8. 

First off, the positive peak is 2 volts and the peak-to-peak value is 4 volts. 
Therefore there is no DC offset. The vertical center of the wave does not 
start at t = 0, thus there must be a phase shift. The value at t = 0 is 1.2 volts. 
The wave hits this same amplitude at t = 2 milliseconds and begins to repeat 
another cycle. Consequently the period must be 2 milliseconds. The 
frequency is the reciprocal of this value, and thus f = 500 Hz. 
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Figure 1.8
Waveform for Example 1.2.
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The waveform is shifted to the left which indicates a positive or leading 
phase shift. If we examine the second cycle, we see that it hits zero volts at 
1.8 milliseconds. Therefore the shift is 0.2 milliseconds. Expressed in 
degrees this is:

θ = 360°
Δ t
T

θ = 360°
0.2ms
2 ms

θ = 36°

The final expression is:
 

v(t )=2sin(2π500 t+36 °)

Example 1.3

Draw the waveform corresponding to the following expression.
v (t )=−3+5sin (2π40000 t−72° )

First, note that the −3 volt offset pushes the positive peak down from 5 volts 
to 2 volts, and the negative peak down from −5 volts to −8 volts. The 
frequency of 40 kHz dictates a period of:

T =
1
f

T=
1

40 kHz
T= 25μs

The phase shift of −72° represents 72/360, or 0.2 cycles. This corresponds to
a time delay (shifted right because it's negative) of 0.2 times 25 μs, or 5 μs.

Initially, it is often best to construct the plot via a series of discrete steps 
rather than trying to draw the entire thing in one go. First, draw a sine wave 
with a 5 volt peak amplitude and a period of 25 μs. Now, push the waveform
down 3 volts so that the positive peak is only 2 volts and the negative peak 
is down at −8 volts. Finally, push the newly shifted waveform to the right by
5 μs. The result is shown in Figure 1.9.
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Laboratory MeasurementsLaboratory Measurements

In the laboratory, a function generator is used to generate sines and other
waveshapes. These devices will allow precise control over both the amplitude and
frequency of the wave along with adding a DC offset, if desired. An example is
shown in Figure 1.10. The corresponding measurement tool is the oscilloscope, or
just scope, for short. 

The oscilloscope is perhaps the most useful and versatile measurement device in
the laboratory. Typically, they feature either two or four input channels, although
more are possible. Each input channel has its own sensitivity adjustment and all
channels share a common time reference. The display draws waveforms in the
same manner as those seen in Figures 1.1 – 1.9. Also, they can plot one voltage
versus another (X – Y mode). Modern oscilloscopes have additional features such as 
the automatic measurement of frequency, amplitude, phase shift, etc., cursor-based 
measurements, and the ability to save display images as graphics files. An example 
of a four channel digital oscilloscope is shown in Figure 1.11. 
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Waveform for Example 1.3.

Figure 1.10
Laboratory signal generator.  



Schematic SymbolsSchematic Symbols

As far as schematics are concerned, the symbols for AC voltage and current sources 
are shown in Figure 1.12. The polarity and direction markings are not absolute; after 
all, these are AC sources whose polarity and directions flip back and forth. The 
markers are instead used to establish a timing reference, especially in circuits 
employing multiple sources. 

It is worth remembering that negating a source is the same as flipping its polarity. 
This was true for DC sources and remains true for AC sources. This is illustrated in 
Figure 1.13. Sometimes flipping or negating source will make analysis a little more 
obvious or easier to visualize. 
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Figure 1.11
A digital oscilloscope.

Figure 1.12
Schematic symbols for AC 
voltage source (left) and 
current source (right).

Figure 1.13
Polarity/sign equivalence.



Example 1.4

Assume an oscilloscope displays two waves as depicted in Figure 1.14. 
Determine the phase shift of the smaller 20 volt peak (blue) waveform 
relative to the larger 25 volt peak (red) waveform.

First, note that neither wave exhibits a DC offset. If one or both them had an 
offset, the wave(s) would have to be shifted vertically so that their normal 
zero-crossing points would be at the same level. Measuring either wave, the 
period is found to be 1 millisecond. The time shift most easily can be found 
at any of the zero-crossings (there are four locations to choose from). The 
delay is one small deviation, or 0.1 milliseconds, with the smaller wave 
delayed in time, or lagging the larger wave. This indicates a negative phase 
shift.

θ = 360 °
Δt
T

θ = 360°
−0.1 ms

1ms
θ =−36 °
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Figure 1.14
Waveforms for Example 1.4.
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Sines and CosinesSines and Cosines

There are a handful of specific phase shifts that are worth a closer look. If a sine 
wave is inverted, that is, flipped upside down, it is indistinguishable from a sine 
wave that has been shifted either +180 or −180 degrees. In other words, such a wave
can be written three different ways: −sin(2πft), sin(2πft − 180°), or sin(2πft + 180°). 
Further, if a sine wave is shifted by +90 degrees (i.e., leading and to the left), it may 
also be referred to as a cosine wave. Thus sin(2πft + 90°) = cos(2πft). Finally, if a 
sine wave is shifted by −90 degrees (i.e., lagging and to the right), it may be referred
to as a negative or inverted cosine wave. Thus sin(2πft − 90°) = −cos(2πft). The 
relationships of these four waves are illustrated in Figure 1.15.

It is also worth noting that the cosine wave represents the first derivative, or slope, 
of the sine wave. As you may recall from other studies, the slope or “steepness” of a 
line is the ratio of the vertical change to the horizontal change, sometimes called 
“the rise over the run”. For a voltage, it would be the change in voltage over the 
change in time, or ΔV/Δt. For a smooth, continuously changing curve like a sine 
wave, the slope at a given point is defined properly as the first derivative, or dv/dt in 
this case. To verify that this is true visually, note that the steepest part of the sine 
wave (green) is where it crosses zero amplitude. As it crosses zero while moving 
positive (at t = 0 or t = 1 in Figure 1.15), the cosine (blue) is at its positive peak. As 
the sine cross zero while moving negative (at t = 0.5), the cosine is at its negative 
peak. Further, the sine wave is flat with a slope of zero at its positive and negative 
peaks (at at t = 0.25 and t = 0.75, respectively), and at those times the cosine's 
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amplitude is also zero. It is also true that the sine wave is the slope of the negative 
cosine wave, the negative cosine is the slope of the negative sine, and the negative 
sine is the slope of the cosine. Moving in the reverse direction, we can say that the 
anti-derivative (indefinite integral) of a cosine wave is a sine wave, the integral of a 
sine wave is a negative cosine wave, and so forth. These relationships will prove 
most useful when we turn our attention to the response of capacitors and inductors in
AC circuits.

RMS – Root Mean Square MeasurementRMS – Root Mean Square Measurement

 Along with peak and peak-to-peak, amplitude may be given as an RMS (Root Mean 
Square) value. In fact, if peak or peak-to-peak is not specified, the measurement 
is assumed to be RMS. RMS is a special calculation used for finding equivalent DC 
power (very common, for example, with audio power amplifiers). In other words, if 
we are interested in finding the power in a resistor, the calculation must be 
performed using RMS values for voltage or current, not peak or peak-to-peak values.
Failure to do so will result in erroneous powers. This is true regardless of the 
waveshape; be it a sine wave, triangle wave or the complex waves of music signals. 
If a voltage is specified as RMS, it can be treated for power calculations just like an 
equivalently sized DC voltage. For example, a 1 volt RMS sine will produce the 
same power dissipation and heating in a given resistor as will 1 volt DC. For this 
reason, RMS is sometimes referred to as the effective value (i.e., effective DC value).

The name root-mean-square describes the process of determining the effective 
value. First, recall that power is proportional to the square of the voltage or current. 
Thus, our first step will be to square the input waveform. Of course, the waveform is
a function of time and its square will yield some new shape. At this point, we need to
find the average value of this new shape. The reason for this is simple, yet not 
necessarily obvious. Electrical and electronic components have mass, and thus do 
not heat or cool instantly. They exhibit a thermal time constant. Therefore, they 
respond to the average input over time. While we could compute some manner of 
“instantaneous peak power” at some specific instant in time, it does not represent the
equivalent DC power. Once we have obtained the mean value of this squared 
waveform, the corresponding DC value is just the square root of the mean. The result
is a fractional value between zero and one that is used as a scaling factor to turn a 
peak value into an RMS value. The value will be unique to the specific waveshape. 
That is, all sines (regardless of phase) have the same factor, all regular triangle 
waves have the same factor, and so on. As we mostly concern ourselves with sines, 
let's take a closer look at determining the RMS factor for them.

We begin with the basic expression for a sine wave without DC offset or phase shift, 
and with an amplitude of one:

v (t )=sin (2π f t )
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The first step is to square this waveform. A useful trigonometric identity is 

(sin x)2=
1
2

−
1
2

cos 2 x

Applying this to our wave yields:

v (t )2= 1
2

−
1
2

cos (2π2 f t)

This expression describes an inverted cosine wave at twice the original frequency 
and half of the original amplitude, riding on a DC offset equal to its peak value. In 
other words, the negative peak of the cosine is at zero and the positive peak is at 1. 
The next step is to find the average or mean value of this intermediate result. The 
mean is equal to the offset of 0.5. This can be visualized as the area above the offset 
perfectly filling the “dip” below the offset. The final step is to take the square root of
the mean. The square root of 0.5 is equal to one over the square root of two, or 
approximately 0.707. Therefore the RMS value is 0.707 times the peak. Alternately, 
you could divide the peak by square root of two, or approximately 1.414. This 
process is shown graphically in Figure 1.16.

In summation, for sine waves, RMS is always the peak value times 0.707. We could 
also say the RMS value of any sine wave is its peak divided by approximately 1.414. 
Again, these ratios would not necessarily be true of non-sine waves. Details 
regarding other common shapes can be found in Appendix C. Finally, the ratio of the
peak value to the RMS value is called the crest ratio. This is a fixed value for sine 
waves (again, about 1.414), but can be over 10:1 for some kinds of audio signals. 
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Figure 1.16
Process to find RMS factor for 
sines.
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WavelengthWavelength

Another item of interest is the speed of propagation of the wave. This varies widely. 
In the case of light in a vacuum (or to a close approximation, an electrical current in 
a wire), the velocity is about 3E8 meters per second (i.e., 300,000 km/s) or about 
186,000 miles per second. 

Given a velocity and a period, we can imagine how far apart the peaks of the wave 
are. This distance is called the wavelength and is denoted by the Greek letter lambda 
λ. Wavelength is equal to the velocity divided by the frequency, λ = v/f. Thus, for a 
loudspeaker producing a 100 Hz sine, as the velocity of sound in air is 344 m/s, then 
λ = 344 m/s / 100 Hz, or 3.44 meters (a little over 11 feet). Notice that the higher the
frequency, the shorter the wavelength. Also, note that the faster the velocity, the 
longer the wavelength. Wavelength calculations are of particular importance in the 
fields of telecommunications and acoustics.

1.3 Basic Fourier Analysis1.3 Basic Fourier Analysis

The Fourier theorem, named after the French mathematician Jean-Baptiste Joseph 
Fourier, states that any repetitive waveform can be represented as a collection of sine
and cosine waves of the proper amplitude and frequency. Alternately, it may be 
represented as a series of sine waves each with the proper amplitude, frequency and 
phase. This includes complex signals such as the human voice and musical 
instruments. Consequently, if a system is linear, the response of a system to a 
complex wave may be understood in terms of its response to individual sine waves, 
via superposition. 

In this collection of waves, each component is known as a partial with the lowest 
frequency component known as the fundamental. All other partials are grouped 
together and referred to as overtones. “Regular” waveforms such as square waves 
and triangle waves feature a harmonic overtone sequence meaning that these 
overtones are integer multiples of the fundamental. As a shortcut, they are often 
referred to as just harmonics. 

It might be hard to visualize initially, but like all waves, waves in the shape of a 
square or triangle are made up of a series of sines. The equation for a square wave is:

)2)12sin((
12

1
)(

1
ftn

n
tv

n





 (1.4)

This says that a square wave of frequency f is made up of an infinite series of sines 
at odd integer multiples of f, with an inverse amplitude characteristic. For example, a
100 Hz square consists of a 100 Hz sine, plus a 300 Hz sine at 1/3 amplitude, plus a 
500 Hz sine at 1/5 amplitude, plus a 700 Hz sine at 1/7 amplitude, and so on. 
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A triangle wave is similar:

)2)12cos((
)12(

1
)(

1 2
ftn

n
tv

n





 (1.5)

Thus a triangle wave of frequency f is made up of an infinite series of cosines (sines 
with a 90 degree or one quarter cycle phase shift) at odd integer multiples of f, with 
an inverse square amplitude characteristic. For example, a 100 Hz triangle consists 
of a 100 Hz cosine, plus a 300 Hz cosine at 1/9 amplitude, plus a 500 Hz cosine at 
1/25 amplitude, plus a 700 Hz cosine at 1/49 amplitude, and so on.

A series of graphs showing the construction of a square wave and a triangle wave 
follow. The square wave sequence begins with the fundamental and the first 
harmonic in Figure 1.17. The result is an oddly bumpy wave. The second graph of 
Figure 1.18 adds the next two harmonics. As more harmonics are added, the sides 
get steeper and the top/bottom start to flatten. They flatten because each additional 
harmonic partially cancels some of the peaks and valleys from the previous 
summation. This gives rise to a greater number of undulations with each undulation 
being smaller in amplitude. The sequence finishes with Figure 1.19 showing seven 
harmonics being added with the result approaching a reasonable square wave. As 
ever more harmonics are added, the wave would approach a flat top and bottom with
vertical sides, the idealized square wave. 
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Building a square wave, part 1.
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Building a square wave, part 2.

Figure 1.19
Building a square wave, part 3.

Building a Square Wave

V
o

lta
g

e

-1.0

-0.5

0.0

0.5

1.0

 

Time

0 0.2 0.4 0.6 0.8 1

Fundamental plus 
seven harmonics:
3, 5, 7, 9, 11, 13, 15Fundamental



The triangle sequence begins with a fundamental and the first harmonic as shown in 
Figure 1.20. The resulting combination is already trending away from a simple sine 
shape. The second and final graph, Figure 1.21, shows a total of seven harmonics. 
The result is very close to a triangle, the only obvious deviation is the slight 
rounding at the very peaks. The addition of more harmonics would cause these to 
sharpen further. 

28

Building a Triangle Wave

One Harmonic

V
o

lta
g

e

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
 

Time

0 0.5 1 1.5 2

Fundamental plus 
one harmonic

Fundamental

Harmonic at three
times fundamental

Figure 1.20
Building a triangle wave, 
part 1.

Building a Triangle Wave

Seven Harmonics

V
o

lta
g

e

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

Time

0 0.5 1 1.5 2

Fundamental plus 
seven harmonics

Fundamental

Figure 1.21
Building a triangle wave, 
part 2.



1.4 Complex Numbers1.4 Complex Numbers

In AC circuits, parameters such as voltage and current are vectors, that is, they have 
both a magnitude and a phase shift or angle. For example, a voltage might be “12 
volts at an angle of 30 degrees” (or more compactly, 1230º). This is known as 
polar form or magnitude-angle form. Alternately, a vector can be broken into 
rectangular form, that is, its right angle components.

This can be visualized as a right triangle where the magnitude is the hypotenuse, the 
angle is the rotation above or below the horizontal, the horizontal component is the 
side adjacent to the angle and the vertical component is the side opposite of the 
angle. This is shown in Figure 1.22.

Properly, voltage and current vectors are complex numbers that lay on a complex 
plane consisting of a real part and an imaginary part. The horizontal axis is the real 
number axis and the vertical axis is the imaginary number axis. The imaginary axis 
denotes values times the imaginary operator j (and often referred to as i outside of 
electrical analysis). The j operator is the square root of −1. An example of such a 
value is 3 + j4, in other words, 3 units along the horizontal real axis and 4 units up 
the vertical imaginary axis. This is depicted in Figure 1.23.
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Converting from one form to another relies on basic trigonometric relations. For 
convenience, the relationships between the magnitude, angle, real component and 
imaginary component are reproduced below:

Magnitude = √Real 2
+Imaginary2

θ= tan−1 Imaginary
Real

Real = Magnitude cosθ
jImaginary = Magnitude sinθ

(1.6a – d)

 
To add or subtract complex quantities, first put them into rectangular form and then 
combine the reals with the reals and the j terms with the j terms as in (3 + j5) +     
(13 − j1) = 16 + j4. These real and imaginary terms must be kept separate. 3 + j5 
does not equal 8 (or even j8). That would be like saying that moving 3 feet to your 
right and 5 feet forward puts you in the same location as moving 8 feet to your right 
(or 8 feet forward). 

The direct way to multiply or divide complex values is to first put them in polar 
form and then multiply or divide the magnitudes. The angles are added together for 
multiplication and subtracted for division. For example, 1230º times 245º is 
2475º while dividing them yields 6−15º. The need for complex numbers will 
become more obvious as we move through the upcoming material. It is imperative 
that you have mastered the manipulation of complex values before moving on to 
subsequent chapters.

Example 1.5

Convert 15 + j20 and 1 k − j2 k into polar form, and 1045º and 0.2−30º 
into rectangular form.

For the first two conversions, use Equations 1.6a and 1.6b.

Magnitude = √15
2
+20

2
= 25

θ = tan−1( 20
15 )= 53.1º

Magnitude = √1 k2+(−2 k )2 = 2.236 k

θ = tan−1(−2k
1 k )=−63.4º

The answers for the first part are 2553.1º and 2.236 k−63.4º. 

For the second pair of conversions use Equations 1.6c and 1.6d.
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Real = 10 cos 45º = 7.07
jImaginary = 10sin 45º = j 7.07

Real = 0.2cos−30º = 0.173
jImaginary = 0.2sin−30º =− j0.1

The answers for the second part are 7.07 + j7.07 and 0.173 − j0.1.

Example 1.6

Perform the following: a) Add 7 + j8 to + j6,   b) Subtract 553.1º from 
10−45º,   c) Divide 2090º by 4−50º,   d) Multiply 90 + j75 by 6 + j10.

a) Add real to real and imaginary to imaginary: 7 + j14.

b) First convert the values into rectangular: 3 + j4 and 7.07 − j7.07. Now 
subtract the first pair from the second pair: 4.07 − j11.07 (or 11.8−69.8º).

c) Divide the magnitudes and subtract the angles: 5140º.

d) First convert the values into polar: 117.1539.8º and 11.6659º. Now 
multiply the magnitudes and add the angles: 1.366 k98.8º.

1.5 Reactance and Impedance1.5 Reactance and Impedance

Unlike a resistor, the voltage and current will not be in phase for an ideal capacitor 
or for an ideal inductor. For the capacitor, the current leads the voltage across the 
capacitor by 90 degrees. Recall that the voltage across a capacitor cannot change 
instantaneously, i = C dv/dt. For an inductor, the voltage leads the current by 90 
degrees. Similarly, the current through an inductor cannot change instantaneously 
due to v = L di/dt. While ideal capacitors and inductors do not exhibit resistance, the 
voltage does react to the current. Unsurprisingly, we call this characteristic 
reactance and denote it with the letter X. Reactance, like resistance, is a ratio of 
voltage to current. We define capacitive reactance as:

X C =
v c

ic

(1.7)

Using a simple sine wave with a peak value of unity, vc = sin 2π f t, ic can be found 
from i = C dv/dt. Recall from our prior work that the derivative or slope of a sine 
wave is a cosine wave, which is in turn equivalent to a sine wave shifted by +90º.
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ic = C
dv c

dt

ic = C d sin(2 π f t )
dt

ic = C sin (2π f t+90º)

Substituting this result into Equation 1.7 yields:

X C =
vc

ic

X C =
sin (2π f t )

2 π f C sin (2π f t+90º)

X C =
1

2π f C
−90º

Or more directly:

X C =− j 1
2π f C

(1.8)

In summation, if we divide the capacitor's sinusoidal voltage by its current (Ohm's 
law), we obtain a value with a phase angle of −90°. While the resultant is an ohmic 
value, it cannot be classified as a resistance. Instead, it is referred to as a reactance 
and denoted with the letter X. Thus we can refer to a capacitor's reactance, XC, as 
some number at an angle of −90º, or more conveniently, we simply prepend −j, as in 
XC = −j75 Ω. 

The case for the inductor is similar and left as an exercise. The inductive reactance, 
XL, can be found using:

X L=+j 2π f L (1.9)

An example would be XL = j68 Ω. As stated, while a resistance cannot be added 
directly to a reactance, reactances can be added together so long as we heed the 
signs. For example, if we have a capacitive reactance of −j60 Ω in series with an 
inductive reactance of j100 Ω, the result is j40 Ω. This is due to the fact that these 
two items are 180 degrees out of phase with each other, and so they partially cancel. 
Remember, always add or subtract like items: real (resistance) to real, and imaginary
(reactance) to imaginary.

Equations 1.8 and 1.9 are notable because the reactance is not just a function of the 
capacitance or inductance, but also a function of frequency. The reactance of an 
inductor is directly proportional to frequency while the reactance of a capacitor is 
inversely proportional to frequency. The ohmic variations of a 20 Ω resistor, a 
500 μF capacitor and a 500 μH inductor across frequency are shown in Figure 1.24.
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We can see that the value of resistance does not change with frequency while the 
inductive reactance increases with frequency and the capacitive reactance decreases.

The linear frequency scale makes the capacitor change difficult to see. If this is 
plotted again but using a logarithmic frequency scale as in Figure 1.25, the 
symmetry becomes apparent. 
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Figure 1.24
Resistance and reactance 
versus frequency (linear axis).

Figure 1.25
Resistance and reactance 
versus frequency (log axis).
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The effect of both capacitor size and frequency is shown in Figure 1.26 using a log 
frequency axis: the smaller the capacitor, the larger the capacitive reactance at any 
particular frequency.

Similarly, the effect of both inductor size and frequency is shown in Figure 1.27 
using a linear frequency axis: the larger the inductor, the larger the inductive 
reactance at any given frequency.
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Figure 1.26
Variation of capacitive 
reactance with capacitance and
frequency.
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It is worth noting that the plots of Figures 1.26 and 1.27 are for ideal components. In
reality, all components exhibit some resistive, capacitive and inductive effects due to
their construction. For example, eventually, inductive and resistive effects will cause
the capacitive reactance curves of Figure 1.26 to begin to rise at high frequencies. 
Similarly, resistive and capacitive effects will cause the curves Figure 1.27 to flatten 
at very low and very high frequencies.

An interesting observation to remember is that capacitors and inductors are a bit like
a Chimera. That is, they look like different things to different sources, all mashed 
together at once. It would be improper to think of, say, a particular inductor as being 
“so many ohms”. If the source signal is comprised of multiple sine waves, such as a 
square wave or a music waveform, the inductor “looks like” a different ohmic value 
to each of the different frequency components, simultaneously. This is an important 
concept and one that we can take great advantage of, for example, in the design of 
filter circuits.

ImpedanceImpedance

We now arrive at impedance. Impedance is a mixture of resistance and reactance, 
and is denoted by Z. This can be visualized as a series combination of a resistor and 
either a capacitor or an inductor. Examples include Z = 100 − j50 Ω, i.e., 100 ohms 
of resistance in series with 50 ohms of capacitive reactance; and Z = 60045º Ω, 
i.e., a magnitude of 600 ohms that includes resistance and inductive reactance (it 
must be inductive reactance and not capacitive reactance because the sign of the 
angle is positive).

To complete this system, we have susceptance and admittance. Susceptance, B, is 
the reciprocal of reactance. Admittance, Y, is the reciprocal of impedance. These are 
similar to the relation between conductance and resistance, and are convenient for 
parallel circuit combinations.

Example 1.7

Determine the reactances of a 1 mH inductor and a 2 μF capacitor to a sine 
wave of 2 kHz. Repeat for a frequency of 50 kHz.

Use Equations 1.8 and 1.9. For the capacitor at 2 kHz we have:

X C =− j
1

2π f C

X C =− j
1

2 π1kHz 2μ F
X C =− j 79.6Ω
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For the second source, 50 kHz is 25 times larger than the original and 
capacitive reactance is inversely proportional to frequency. Therefore XC is 
25 times smaller, or −j3.18 Ω.

For the inductor at 2 kHz,

X L =+j 2π f L
X L =+j 2π 2kHz1 mH
X L =+j 12.57Ω

Inductive reactance is directly proportional to frequency. Thus, increasing f 
by a factor of 25 increases XL by the same factor, resulting in j314.2 Ω.

Example 1.8

Determine the susceptance of an inductor whose reactance is j400 Ω. 
Further, if this inductor is placed in series with a 1000 Ω resistor, determine 
the resulting impedance in polar form, as well as the admittance.

Susceptance is the reciprocal of reactance.

BL =
1
X L

BL =
1

j 400Ω
BL =− j 2.5  millisiemens

The impedance, Z, is the vector sum, or 1000 + j400 Ω. Converting this to 
polar form:

Magnitude = √Real2
+Imaginary2

Magnitude = √10002+4002

Magnitude = 1077
 

θ = tan−1(Imaginary
Real )

θ = tan−1( 400
1000 )

θ = 21.8º

The result is Z = 107721.8º Ω. The admittance is the reciprocal, yielding  
Y = 928E-6−21.8º μS.
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1.6 Phasor Diagrams1.6 Phasor Diagrams

A time domain representation of sine waves as drawn earlier tells us everything we 
need to know about the waves, however it is not the most compact method of 
displaying them, nor are they easy to sketch by hand. Consider the the plot of Figure
1.28. Here, two sine waves (green and red) combine to create a third sine wave 
(blue). While the general idea of the two waves adding is apparent in the graph, it 
takes a moment of inspection to determine the wave magnitudes and the precise 
phase relationships between them. In contrast, phasor diagrams can be used to show
the relationships of multiple sines waves in a simple and easy to read format. They 
can also be used to show how various voltages or currents combine. 

The phasor diagram is based on the complex plane discussed previously where the 
horizontal is the real axis and the vertical is the imaginary (j) axis. The magnitude 
and phase of each wave can then be drawn as a vector, and the relationships between
the waves is shown directly. For manual plotting, it is convenient to convert from 
polar form to rectangular form. In the example phasor diagram of Figure 1.29, two 
vectors are shown: 8 + j6 and 5 − j3 (equivalent to 1036.9º and 5.83−31º). 
Phasor diagrams can be used to plot voltages, currents and impedances. We shall 
make considerable use of them in upcoming chapters.

37

Adding Sines

P
er

ce
nt

ag
e 

of
 P

ea
k

-150

-100

-50

0

50

100

150

 

Time

-1 -0.5 0 0.5 1

Additional wave

Initial

Resultant wave

Figure 1.28
A time domain plot.



1.7 Summary1.7 Summary

The most simple of AC waveforms is the sine wave. It can be thought of as the 
vertical displacement of a vector rotating at a constant speed, like the second hand of
a clock. The length of the second hand represents the height or amplitude of the sine 
wave and the speed of rotation represents its period. As the speed tends to be very 
fast, it is more convenient for us to use frequency, which is just the reciprocal of the 
period. Sines can be displaced vertically, which is also called a DC offset, as well as 
having a horizontal or time shift. When expressed relative to a single cycle, this 
change is referred to as the phase shift. Finally, waveforms such as square waves, 
triangle waves and even more complex waveforms such as voice or music can be 
described in terms of combinations of sounds. Indeed, Fourier analysis tells us that 
any repeating waveform can be described as a series of sines each with the 
appropriate frequency, amplitude and phase shift. In order to determine the 
“effective DC value” of a sine wave, that is, the value that produces the same power 
dissipation, RMS values are used. The RMS value of a sine wave is its peak value 
divided by the square root of two (approximately equal to 0.707 of peak).

Complex numbers are used to describe AC voltages and currents, among other 
things. They consist of two parts: a real part and an imaginary part that is plotted 
perpendicular to the real part. All mathematical operations on complex numbers 
must follow vector rules. This includes basic trigonometric operations. 

Reactance can be thought of as the imaginary axis version of resistance. That is, it 
restricts current flow. The difference is that there is a 90 degree phase shift between 
the current and voltage through a reactive element while the two are in phase for 
resistive elements. Capacitive reactance is inversely proportional to frequency while 
inductive reactance is directly proportional to frequency. The combination of 
resistance and reactance is known as impedance. Phasor diagrams may be used to 
plot the components of a complex impedance as well as show the relations between 
voltages or currents in a circuit.
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Review QuestionsReview Questions

1. What is a sine wave? Describe its constituent parameters (amplitude, 
frequency, offset, etc.).

2. What is the relationship between the frequency, period and phase of a sine 
wave?

3. What is the mathematical relationship between a sine wave and a cosine 
wave?

4. What is meant by the term RMS (root-mean-square) and what does it have to
do with AC versus DC voltages, currents and powers?

5. Describe the difference between a scalar and a vector.
6. What is a complex number?
7. Detail the relationships between resistance, reactance, impedance, 

conductance, susceptance and admittance.
8. Describe how capacitive reactance varies with frequency.
9. Describe how inductive reactance varies with frequency.
10. Describe a phasor diagram. 

1.8 Exercises 1.8 Exercises 

AnalysisAnalysis

1. Determine the AC peak and RMS voltages, DC offset, frequency, period and 
phase shift for the following expression: v(t) = 10 sin 2π 1000 t

2. Determine the AC peak and RMS voltages, DC offset, frequency, period and 
phase shift for the following expression: v(t) = 0.4 sin 2π 5000 t

3. Determine the peak AC portion voltage, DC offset, frequency, period and 
phase shift for the following expression: v(t) = −3 + 20 sin 2π 50 t

4. Determine the peak AC portion voltage, DC offset, frequency, period and 
phase shift for the following expression: v(t) = 12 + 2 sin 2π 20000 t

5. Determine the AC peak and RMS voltages, DC offset, frequency, period and 
phase shift for the following expression: v(t) = 10 sin (2π 100 t + 45°)

6. Determine the AC peak and RMS voltages, DC offset, frequency, period and 
phase shift for the following expression: v(t) = 5 sin (2π 1000 t − 90°)

7. Determine the peak AC portion voltage, DC offset, frequency, period and 
phase shift for the following expression: v(t) = 10 + 1 sin (2π 400 t − 45°)

8. Determine the peak AC portion voltage, DC offset, frequency, period and 
phase shift for the following expression: v(t) = 10 + 10 sin (2π 5000 t + 30°)
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9. A 1 kHz sine wave has a phase of 72°. Determine the time delay. Repeat for 
a 20 kHz sine wave.

10.  A 2 kHz sine wave has a phase of 18°. Determine the time delay. Repeat for
a 100 kHz sine wave.

11. An oscilloscope measures a time delay of 0.2 milliseconds between a pair of
500 Hz sine waves. Determine the phase shift.

12. An oscilloscope measures a time delay of −10 microseconds between a pair 
of 20 kHz sine waves. Determine the phase shift.

13. Convert the following from rectangular to polar form: a) 10 + j10  b) 5 − j10
c) −100 + j20 d) 3k + j4k 

14. Convert the following from rectangular to polar form: a) 2k + j1.5k            
b) 8 − j8  c) −300 + j300 d) −1k − j1k

15. Convert these from polar to rectangular form: a) 1045°  b) 0.490°          
c) −960° d) 100−45° 

16. Convert these from polar to rectangular form: a) −460°  b) −0.930°         
c) 5120° d) 6−135°

17. Perform the following computations: a) (10 + j10) + (5 + j20)                        
b) (5 + j2) + (−5 + j2)  c) (80 − j2) − (100 + j2)  d) (−65 + j50) − (5 − j200)

18. Perform the following computations: a) (100 + j200) + (75 + j210)                
b) (−35 + j25) + (15 + j8)  c) (500 − j70) − (200 + j30)                                   
d) (−105 + j540) − (5− j200)

19. Perform the following computations: a) (100 + j200) ∙ (75 + j210)                 
b) (−35 + j25) ∙ (15 + j8)  c) (500 − j70) / (200 + j30)                                   
d) (−105 + j540) / (5− j200)

20. Perform the following computations: a) (10 + j10) ∙ (5 + j20)                         
b) (5 + j2) ∙ (−5 + j2)  c) (80 − j2) / (100 + j2)   d) (−65 + j50) / (5− j200)

21. Perform the following computations: a) (100°) ∙ (100°)                            
b) (545°) ∙ (−220°)  c) (20135°) / (40−10°)   d) (80°) / (3245°)

22. Perform the following computations: a) (0.30°) ∙ (3180°)                        
b) (5−45°) ∙ (−420°)    c) (0.0595°) / (0.04−20°)                                  
d) (5000°) / (60225°)

23. Perform the following computations: a) (0.30°) + (3180°)                        
b) (5−45°) + (−420°)  c) (0.0595°) − (0.04−20°)                                
d) (5000°) − (60225°)

24. Perform the following computations: a) (100°) + (100°)                           
b) (545°) + (−220°)  c) (20135°) − (40−10°)                                        
d) (80°) − (3245°)
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25. Determine the capacitive reactance of a 1 μF capacitor at the following 
frequencies: a) 10 Hz  b) 500 Hz    c) 10 kHz  d) 400 kHz  e) 10 MHz

26. Determine the capacitive reactance of a 220 pF capacitor at the following 
frequencies: a) 10 Hz b) 500 Hz    c) 10 kHz  d) 400 kHz  e) 10 MHz

27. Determine the capacitive reactance at 50 Hz for the following capacitors:    
a) 10 pF b) 470 pF  c) 22 nF  d) 33 μF

28. Determine the capacitive reactance at 1 MHz for the following capacitors:   
a) 22 pF b) 560 pF  c) 33 nF d) 4.7 μF

29. Determine the inductive reactance of a 100 mH inductor at the following 
frequencies: a) 10 Hz  b) 500 Hz  c) 10 kHz  d) 400 kHz  e) 10 MHz

30. Determine the inductive reactance of a 100 mH inductor at the following 
frequencies: a) 10 Hz b) 500 Hz  c) 10 kHz  d) 400 kHz  e) 10 MHz

31. Determine the inductive reactance at 1 kHz for the following inductors:      
a) 10 mH  b) 500 mH c) 10 μH  d) 400 μH 

32. Determine the inductive reactance at 500 kHz for the following inductors:   
a) 1 mH  b) 40 mH c) 2 μH  d) 50 μH 

33. Draw phasor diagrams for the following: a) 5 + j2  b) −10 −j20  c) 845°     
d) 2−35°

34. Draw phasor diagrams for the following: a) 60j−20  b) −40 + j500                
c) 0.05−45°  d) −1560°

35. The fundamental of a certain square wave is a 5 volt peak, 1 kHz sine. 
Determine the amplitude and frequency of each of the next five harmonics. 

36. The fundamental of a certain triangle wave is a 10 volt peak, 100 Hz sine. 
Determine the amplitude and frequency of each of the next five harmonics.

DesignDesign

37. Determine the capacitance required for the following reactance values at      
1 kHz: a) 560 Ω  b) 330 kΩ  c) 470 kΩ  d) 1.2 kΩ  e) 750 Ω

38. Determine the capacitance required for the following reactance values at     
20 Hz: a) 56 kΩ  b) 330 kΩ  c) 470 kΩ  d) 1.2 kΩ  e) 750 Ω

39. Determine the inductance required for the following reactance values at    
100 MHz: a) 560 Ω  b) 330 kΩ  c) 470 kΩ  d) 1.2 kΩ  e) 750 Ω

40. Determine the inductance required for the following reactance values at      
25 kHz: a) 56 Ω  b) 33 kΩ c) 470 kΩ  d) 1.2 kΩ  e) 750 Ω
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41. Which of the following have a reactance of less than 100 Ω for all 
frequencies below 1 kHz? a) 2 mH  b) 99 mH  c) 470 pF  d) 10000 μF

42. Which of the following have a reactance of less than 8 Ω for all frequencies 
above 10 kHz? a) 10 nH b) 5 mH  c) 56 pF  d) 470 μF

43. Which of the following have a reactance of at least 1k Ω for all frequencies 
above 20 kHz? a) 2 mH b) 200 mH  c) 680 pF  d) 33 μF

44. Which of the following have a reactance of at least 75 Ω for all frequencies 
below 5 kHz? a) 680 μH  b) 10 mH  c) 82 pF  d) 33 nF

ChallengeChallenge

45. Determine the negative and positive peak voltages, RMS voltage, DC offset, 
frequency, period and phase shift for the following expression:                      
v(t) = −10 sin (2π 250 t + 180°)

46. Determine the negative and positive peak voltages, DC offset, frequency, 
period and phase shift for the following expression:                                   
v(t) = 1 − 100 sin 2π 50000 t

47. Assume you have a DC coupled oscilloscope set as follows:                           
time base = 100 microseconds/division, vertical sensitivity = 1 volt/division.
Sketch the display of this waveform: v(t) = 2 + 3 sin 2π 2000 t

48. Assume you have a DC coupled oscilloscope set to the following:                 
time base = 20 microseconds/division, vertical sensitivity = 200 
millivolts/division. Sketch the display of this waveform:                            
v(t) = −0.2 + 0.4 sin 2π 10000 t

49. A 200 Ω resistor is in series with a 1 mH inductor. Determine the impedance
of this combination at 200 Hz and at 20 kHz.

50. A 1 kΩ resistor is in series with an inductor. If the combined impedance at 
10 kHz is 1.41 k45°, determine the inductance in mH. 
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NotesNotes

♫♫♫♫
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2 2 Series RLC CircuitsSeries RLC Circuits

2.0 Chapter Learning Objectives2.0 Chapter Learning Objectives

After completing this chapter, you should be able to: 

• Utilize Kirchhoff's voltage law, the voltage divider rule and Ohm's law to find node and component 
voltages in series RLC networks that utilize voltage sources or a single current source.

• Compute complex impedance and system current in series RLC circuits.
• Draw phasor diagrams for impedance and component voltages in series RLC circuits.

2.1 Introduction 2.1 Introduction 

In this chapter we introduce series RLC circuits for the AC case. There is much here that will be familiar from 
your prior studies with DC series circuits, however, there will be a few notable changes and perhaps a surprise or
two lurking. The key to most of this is to remember that all computations involve vector quantities. In fact, DC 
can be thought of as a special case of AC; namely, the frequency drops to zero hertz causing XC to approach an 
open and XL to drop to zero. This leaves us with just resistors and scalar quantities because the phase angles in 
the remainder of the circuit collapse to zero for DC steady state.

Many of the solution techniques from DC analysis will be applicable here. This includes the use of Ohm's law 
and Kirchhoff's voltage law, along with the voltage divider rule. Generally, reactance values will need to be 
computed from capacitor and inductor values before the main analysis may begin. In this chapter, as in the most 
of the remaining chapters, we shall be concerned with determining the circuit response based on a source with a 
single frequency of excitation, in other words, a simple sine wave.

To clarify our analyses, we shall make considerable use of both time domain voltage plots as well as phasor 
diagrams. 

2.2 The Series Connection2.2 The Series Connection

A series connection is always characterized by a single loop or path for current flow. There are no junctions 
from which current can flow out of or into. Consequently, 

The current is the same everywhere in a series connection. (2.1)

Each component in such a loop will see the same current, regardless of whether it is a resistor, capacitor or 
inductor. Before component voltages can be determined, the capacitive and inductive reactance values must be 
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computed from the capacitor and inductor values, based on the frequency of the 
driving source. Consequently, if this frequency were to change, the reactances would
change, and this would in turn cause changes in the circulating current and 
component voltages. 

2.3 Series Impedance2.3 Series Impedance

Perhaps the first practical issue we face is determining the effective impedance of an
RLC series loop. For starters, resistors in series simply add. Reactances also add but 
we must be careful of the sign. Inductive reactance and capacitive reactance will 
partially cancel each other. Thus, the impedance in rectangular form is the sum of 
the resistive components for the real portion, plus the sum of the reactances for the 
imaginary (j) portion. We will often find it convenient to express this value in polar 
form.

Example 2.1

What is the impedance of the network shown in Figure 2.1 at a frequency
of 15 kHz?

First we need to find the capacitive reactance value.

X C =− j
1

2π f C

X C =− j
1

2π15kHz 910 pF
X C =− j 11.66 k Ω

As there is only one resistor and one capacitor, the result in rectangular form
is 47 k −j11.66 kΩ. In polar form this is:

Magnitude = √Real
2
+Imaginary

2

Magnitude = √47k 2+(−11.66 k )2

Magnitude = 48.42 k
 

θ = tan−1(Imaginary
Real )

θ = tan−1( −11.66 k
47 k )

θ =−13.9º

That is, in polar form Z = 48.42E3−13.9° Ω.
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Figure 2.1
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Example 2.2

Determine the effective impedance of the circuit shown in Figure 2.2 if the
source frequency is 2 kHz. Repeat this for source frequencies of 200 Hz
and 20 kHz. Finally, express the results in both rectangular and polar form.

The first step is to find the reactance values at 2 kHz.

X L = j 2π f L
X L = j 2π2000Hz 15mH
X L = j 188.5Ω

X C =− j
1

2π f C

X C =− j
1

2π2000 Hz 270 nF
X C =− j 294.7 Ω

Combine reals with reals and j terms with j terms.

Z = R+ j X L − j X C

Z = 500+ j 188.5 − j 294.7Ω
Z ≈ 500− j 106.2Ω = 511.2−12°Ω

At 200 Hz XC will ten times larger and XL will be ten times smaller.

XC = −j2947 Ω
XL = j18.85 Ω 
Z = 500 + j18.85 −j2947 Ω
Z ≈ 500 −j2928 Ω = 2970−80.3° Ω

At 20 kHz XC will ten times smaller and XL will be ten times larger.

XC = −j29.47 Ω
XL = j1885 Ω 
Z = 500 + j1885 −j29.47 Ω
Z ≈ 500 + j1856 Ω = 192274.9° Ω

To help visualize this complex impedance, it is useful to construct a phasor plot as 
shown in Figure 2.3. We will do this for the initial case of 2 kHz. The resistive 
component is the horizontal vector of length 500 (yellow). XL is straight up (blue) at 
188.590°, and XC is straight down (red) at 294.7−90°. By copying the XL vector 
and then shifting it down and next to XC, the difference between the two reactive 
components can be seen (purple component directly above the XL copy). This 
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reactive sum is then copied and shifted right to join the resistive component to show 
the final result. This is 511.2−12° Ω (green), as expected. 

Example 2.3

Determine the impedance of the network shown in Figure 2.4. If the input
frequency is 1 kHz, determine the capacitor and inductor values.

The reactance values are already given, so we simply add them to determine 
the impedance in rectangular form. Combine reals with reals and j terms 
with j terms, and then convert to polar form.

Z = R+ j X L − j X C

Z = 750+ j 600 − j 200Ω
Z = 750+ j 400Ω= 850 28.1°Ω

To find the capacitance and inductance, we simply rearrange the reactance 
formulas and solve. First, the inductor:

X L = j 2π f L
 

L =
| X L |

2π f

L =
600Ω

2π1kHz
L ≈ 95.5 mH

47

Figure 2.3
Construction of the impedance 
plot for the network of     
Figure 2.2.

R

jX

-jX
-400

300

600

jX

-jX

R

Z

jX

+ jX

L

C

L

C

L-jX

Figure 2.4
Circuit for Example 2.3.



And now for the capacitor:

X C =− j
1

2 π f C
 

C =
1

2π f | X C |

C =
1

2π1 kHz 200Ω
C = 796 nF

A plot of the impedance vector summation is shown in Figure 2.5. Note how
the three components combine graphically to arrive at Z.

2.4 Series Circuit Analysis2.4 Series Circuit Analysis

The techniques employed for series AC circuit analysis are the same as those used 
for DC. The key item to remember for series circuits, whether AC or DC, as that the 
current will be the same everywhere in a series connection. The major analysis tools 
are Ohm's law, Kirchhoff's voltage law (KVL), and optionally, the voltage divider 
rule. 
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Figure 2.5
Impedance plot for the network 
of Example 2.3.



KVL states that the sum of voltages around a loop must be zero, or that the sum of 
voltage rises around a loop must equal the sum of voltage drops:

∑ v↑ =  ∑ v↓ (2.2)

The voltage divider rule for AC states that the voltage across any component or 
group of components is proportional to the ratio of the impedance of said component
and the total series impedance. For some component A driven by source e,

v A = e
Z A

Z Total

(2.3)

If current is the desired quantity, the equivalent impedance of the network is found 
and then divided into the equivalent source voltage. If the voltages across specific 
components are desired, they can be found using the circulating current and Ohm's 
law. Alternately, they can be computed using the voltage divider rule. If a current 
source is driving the series circuit then the circulating current is the source current. 
Individual component voltages may be found using the source current and Ohm's 
law. The source voltage may be found by summing the component voltages via KVL,
or by determining the equivalent series impedance and multiplying it by the source 
current.

Example 2.4

For the circuit of Figure 2.6, find the circulating current and the voltages
across the capacitor and resistor. 

The first step is to determine XC and then find Ztotal. Then use
Ohm's law to find the circulating current.

X C =− j
1

2π f C

X C =− j
1

2π1000Hz 33nF
X C =− j 4823Ω

ZTotal = R+(− j X C)

ZTotal = 2200Ω− j 4823Ω

ZTotal = 5301−65.5°Ω

i =
v
Z

i =
1V

5301−65.5°Ω
i = 188.6 65.5°μ A
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Figure 2.6
Circuit for Example 2.4.



Now use Ohm's law to find the component voltages.

v R = i×R
v R = 188.6 65.5°μ A×2200 0°Ω

v R = 0.4149 65.5° V

vC = i× X C

vC = 188.6 65.5° μA×4823−90°Ω

vC = 0.9098−24.5° V

To complete this Example, we shall generate a series of plots: First off, an 
impedance plot showing the vector combination of R and XC leading to ZTotal. 
This is shown in Figure 2.7. 

Next, Figure 2.8 illustrates the phasor diagram of the three voltages. It may 
not be immediately apparent but an examination of this plot shows that it is 
just a counterclockwise rotation of the impedance plot. In fact, it is rotated 
by 65.5 degrees, the phase angle of the current. This should come as no 
surprise as the current is multiplied by each resistance, reactance or 
impedance to develop the voltage, and a vector multiplication simply adds 
the angles. 

Also, note that if we simply summed the magnitudes of the component 
voltages, the result would be considerably larger than the input voltage, 
seeming to violate KVL. In contrast, once a proper vector summation is 
performed, all is right in paradise.

50

Figure 2.7
Impedance plot for 
Example 2.4.



For further clarity, Figure 2.9 plots the voltages in the time domain. Note 
how the component voltages add graphically resulting in the input voltage.
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Figure 2.8
Voltage phasor diagram for 
Example 2.4.
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The time shifts may be computed for verification as follows:

θ = 360°
Δt
T

ΔtR = T
θR

360 °

Δt R = 1 ms
65.5°
360°

Δt R = 181.9μ s

Δt C = T
θC

360 °

ΔtC = 1ms−24.5°
360°

ΔtC =−68μ s

Thus we verify the resistor voltage leading (to the left) by 181.9 μs and the 
capacitor voltage lagging (to the right) by 68 μs, as seen in Figure 2.9.

Computer SimulationComputer Simulation

The circuit of Example 2.4 is captured into a simulator as shown in Figure 2.10. 
Node voltage 1 corresponds to the input voltage and node 2 corresponds to the 
capacitor voltage. The resistor voltage is merely the difference between these two, or
node 1 minus node 2. 

A transient or time domain simulation is performed. The results of the simulation are
shown in Figure 2.11. Note the tight agreement with the computed results as plotted 
in Figure 2.9. 
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Figure 2.10
The circuit of Example 2.4 in a 
simulator.



We will now examine a variety of different series circuits. To ease the computations, 
we will simply state values for the component reactances rather than specify a 
frequency along with inductor and/or capacitor values. 

Example 2.5

Determine the component voltages for the circuit shown in Figure 2.12.

Given the reference direction of the source (which produces a 
counterclockwise reference current), the voltage across the resistor will be 
defined as vb − va. The first step is to find the equivalent series impedance. 
By inspection, this is 180 + j360 Ω, which is equivalent to 402.563.4° Ω. 

The voltages can be found via the voltage divider rule.

v L = e
X L

Z

v L = 6 0° V 360 90°Ω
402.5 63.4°Ω

v L = 5.366 26.6° Vp
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Figure 2.11
Time domain response of 
Example 2.4 from a simulator.

Figure 2.12
Circuit for Example 2.5.



v R = e
R
Z

v R = 6 0° V
180 0° Ω

402.5 63.4 °Ω
v R = 2.683−63.4° Vp

The rectangular versions of vL and vR are 4.8 + j2.4 and 1.2 − j2.4 
respectively, summing up to the source of 60°. This is illustrated in the 
phasor voltage plot of Figure 2.13. 

Compare the plot of Figure 2.13 to that of the RC circuit in Figure 2.8. In 
this circuit, the impedance is inductive. This causes the current to lag the 
voltage, the opposite of the case for the RC circuit. Thus, the resistor voltage
winds up below the real axis instead of above it (remember, the current and 
voltage for a resistor are in phase, and therefore the voltage across the 
resistor will have the same phase angle as the current through it). Once 
again, simply summing the magnitudes of the voltages yields a greater value
than the source, however, a proper vector addition shows that KVL is 
satisfied. 

A time domain plot of the source and component voltages is shown in  
Figure 2.14. Note the similarity with the plot of Figure 2.9. Further, note 
how the time positions of the component voltages have swapped.
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Figure 2.13
Voltage phasor diagram for 
Example 2.5.



 

Finally, as a source frequency was not specified for this circuit, the time 
scale of Figure 2.14 is calibrated in terms of cycles rather than seconds.

Example 2.6

Find the voltages va and vb in the circuit of Figure 2.15. Assume the current
source is the reference of 0°.

Ohm's law may be used directly as the current is set by the source. Given
the reference direction of the 20 mA source, the reference polarity for the
capacitor voltage will be + to − from bottom to top. Thus, va is negative.

v a = vC =−i×X C

v a =−20E-3 0° A×1000−90°Ω

v a =−20−90° V

Recalling that a negative magnitude is the same as a 180° phase shift, we 
may remove the magnitude's negative sign by adding 180° to the phase 
angle. Therefore, va may also be written as 2090°. 

The node b voltage is found by multiplying the current by the impedance 
seen from node b to ground.
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Figure 2.14
Time domain response for 
Example 2.5.
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vb = i×(R+ jX L)

vb = 20 0° mA×(4300+j 150Ω)

vb = 86.05 2° V

Notice the small size of the phase angle. This is expected given that the 
inductive reactance is so much smaller than the resistive component. Finally,
these voltage are RMS as the current is assumed to be RMS (not having been 
labeled as peak or peak-to-peak). 

Example 2.7

Find the voltage vbd in the circuit of Figure 2.16. E1 = 20° volts peak and 
E2 = 560° volts peak. 

The first step is to find the equivalent source voltage. Voltage sources in 
series add, however, note the reference polarity for E2. If we take E1 as the 
system reference, then the combined source is E1 − E2. Using E1 as the 
reference source creates a clockwise reference current and thus a positive 
reference polarity for vbd. If E2 was taken as the reference then vbd would be 
assumed to be negative due to the assumed counterclockwise reference 
direction of the resulting current. Either way will work.

ETotal = E1 −E2

ETotal = 2 0 ° Vp −5 60 ° Vp
ETotal = 4.359−96.6° Vp

We can now use a voltage divider between the impedance seen from node b 
to node d versus the total series impedance. The impedance of the circuit is  
2 k + j7.5 k − j800 Ω, or 2 k + j6.7 k Ω. This is equivalent to 699273.4° Ω.
The impedance between nodes b and d is j7.5 k − j800 Ω, or j6.7 k Ω. In 
polar form this is 670090° Ω.
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Figure 2.16
Circuit for Example 2.7.



The voltage divider yields:

vbd = e
Z bd

Z Total

vbd = 4.359−96.6° V
6700 90°Ω

6992 73.4 °Ω
vbd = 4.177−80° Vp

Although we have answered the question, at this point attempting to 
visualize the waveforms in your head to verify the results may be a little 
challenging. No problem! If we also find the voltage across the resistor, we 
can check to see if KVL is verified using a phasor diagram. First, the resistor 
voltage may be found using the voltage divider rule.

v R = e
R

Z Total

v R = 4.359−96.6° V 2000 0°Ω
6992 73.4°Ω

v R = 1.247−170° Vp

We now plot all four voltages as seen in Figure 2.17 (note the unequal 
horizontal versus vertical scaling for ease of visual analysis).
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Figure 2.17
Voltage phasor diagram for 
Example 2.7.



KVL tells us that the sum of the voltage rises must equal the sum of the 
voltage drops. We had used E1 as the reference and treated it as a rise. This 
made the reference direction clockwise for the circulating current. As a 
consequence, vR and vbd are voltage drops. E2 is also seen as a drop given its 
reference polarity markings. In other words, E1 should equal the sum of vR, 
vbd and E2. Let's see if this is borne out graphically in the phasor diagram.

Looking at imaginary parts first, E1 is strictly real so the other three vectors 
should sum to zero for their imaginary parts. The imaginary part of E2 is 
about +4.3 while the other two come in around −4.1 and −0.2, so they do 
balance. For the real parts, E2 is +2.5, vbd is about +0.7 and vR is about −1.2. 
These add up to +2, the real component of E1. Everything balances. For 
more exacting results, you could convert each of the polar form results into 
rectangular form and add the reals to the reals, and the imaginaries to the 
imaginaries, and get the same result. In fact, using the prior recorded values, 
the three drops sum to 1.9970.0013° volts versus precisely 20° volts. 
This small deviation is due to the accumulated rounding and truncation 
errors of the intermediate results.

Sometimes a problem concerns determining resistance or reactance values. The 
solution paths will require use of the analysis rules in reverse. For example, if a 
resistor value is needed to set a specific current, the total required impedance can be 
determined from this current and the given voltage supply. The values of the other 
series components can then be subtracted from the total (using rectangular form),
yielding the required resistor or reactance value. 

Another possibility is determining a specific capacitance or inductance to meet
certain requirements. An example of this would be a simple crossover network for
a loudspeaker system. Generally, a single transducer is incapable of reproducing
music signals of all frequencies at sufficiently loud levels while maintaining low
distortion. Consequently, the frequency range is split into two or more bands with 
each being covered by a transducer optimized to reproduce those frequencies. These 
transducers, along with a few electrical components, are then packaged into an 
appropriate enclosure commonly referred to as a loudspeaker1. In a basic system, the
audible spectrum is split into two parts, as seen in Figure 2.18. The low frequencies 
are handled by a large transducer called a woofer, while the high frequencies are 
handled by a small, light transducer called a tweeter that can follow the rapidly 
changing high frequency content with accuracy. Woofers are not capable of 
reproducing high frequencies, and excessive low frequency content can physically 
damage a tweeter. Thus, some means of “steering” the high frequency content to the 
tweeter and the low frequency content to the woofer must be employed. One way to 
do this is to place an inductor or capacitor in series with the transducer. 

1 To add some confusion, the term “loudspeaker” can refer to either the individual 
transducers (engineer-speak) or the entire finished system (audiophile-speak).
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Figure 2.18
A two-way bookshelf 
loudspeaker system with 
tweeter (top) and woofer 
(bottom).



Figure 2.19 shows a simple way to block low frequencies from a tweeter. In this 
diagram, the loudspeaker is modeled as a resistor. Although this is not perfectly 
accurate, it is sufficient to illustrate the idea. 

To understand this concept, simply think of the circuit as a voltage divider between 
the loudspeaker and the reactance of the capacitor. Capacitive reactance is inversely 
proportional to frequency. The circuit is designed such that XC is much larger than 
than the impedance of the loudspeaker at very low frequencies. This means that very
little of a low frequency signal will reach the loudspeaker as most of that voltage 
will drop across the capacitor. In contrast, at high frequencies XC is much smaller 
than the tweeter's impedance and thus virtually all of the source signal reaches the 
loudspeaker. The transition point between these two regions is called the crossover 
frequency and is usually defined as the point where XC equals the magnitude of the 
loudspeaker impedance. For a woofer, the capacitor would be replaced by an 
inductor. At low frequencies the inductive reactance would be minimal, thereby 
allowing all of the low frequency content to reach the woofer. The opposite happens 
at high frequencies. The inductive reactance would rise with frequency and 
eventually prevent or “choke off” the signal to the woofer (hence, the slang term 
“choke” for an inductor).

Example 2.8

Referring to the circuit of Figure 2.19, assume the loudspeaker impedance is
80° Ω. Determine a capacitor value for a crossover frequency of 2.5 kHz. 
At this frequency the magnitude of XC should be the same as that of the 
loudspeaker. For a 10 volt RMS input signal, determine the loudspeaker 
voltage at frequencies of 100 Hz, 2.5 kHz and 15 kHz.

The first step is to determine the value of the capacitor such that at 2.5 kHz 
XC equals 8 Ω. To do this, simply rearrange the capacitive reactance formula:
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Figure 2.19
A basic loudspeaker crossover 
network.



X C =− j
1

2π f C

C =
1

2π f | X C |

C =
1

2π 2500 Hz 8Ω
C = 7.96μ F

To find the loudspeaker voltage at the three specified frequencies, first find 
the reactance at that frequency and then use the voltage divider rule. We 
already know that at 2.5 kHz the reactance is −j8 Ω.

vloudspeaker = e
Z Load

ZTotal

vloudspeaker = 10 0° Vrms
8Ω

8 − j 8Ω
vloudspeaker = 7.07 45 ° Vrms

At 100 Hz, the frequency has decreased by a factor of 25 so the reactance 
goes up by the same factor yielding −j200 Ω.

vloudspeaker = e
Z Load

ZTotal

vloudspeaker = 10 0° Vrms
8Ω

8 − j 200Ω
vloudspeaker = 0.4 87.7° Vrms

At 15 kHz, the frequency has increased by a factor of 6 so the reactance 
goes down by the same factor yielding −j1.333 Ω.

vloudspeaker = e
Z Load

ZTotal

vloudspeaker = 10 0° Vrms 8Ω
8 − j 1.333Ω

vloudspeaker = 9.86 9.5° Vrms

From this tally, it should be obvious that the lowest bass frequencies will 
experience attenuation while the highest frequencies will see little reduction 
in amplitude. This is just what we want. 

The concept of a variation in output voltage with respect to frequency, or 
frequency response, will be examined in much greater detail in upcoming 
chapters.
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2.5 Concerning Practical Inductors 2.5 Concerning Practical Inductors 

Up to this point, inductors have been treated as ideal components, that is, pure 
inductance. In reality, all inductors have some resistance associated with them due to
the resistance of the wire used to make the coil. This is called ESR, or Equivalent 
Series Resistance. It is also denoted as Rcoil. Ideally, this resistance will be small 
enough to ignore, but ultimately it will place a limit on the performance of any 
circuit that utilizes an inductor. 

While it is possible to measure the resistance of an inductor using a DMM, this will 
not yield an accurate value at all frequencies. In fact, as frequency increases, ESR 
will also increase. This is due to skin effect. At higher frequencies, current is not 
distributed equally throughout the cross-section of a conductor. In fact, it tends to 
“hug” the outer surface or “skin” of the conductor. This reduces the effective cross-
sectional area and thereby increases the resistance2. In general, as frequency rises, so
does Rcoil. Unfortunately, the situation is further complicated by distributed 
capacitance that will become an issue at still higher frequencies. As a consequence, 
manufacturers will give a “Q plot”, such as the one shown in Figure 2.20. 

2 Recall that R = ρ l / A. A decrease in area A results in increased resistance, R. 

61

Figure 2.20
Inductor Q graph.
Courtesy of TDK

https://product.tdk.com/info/en/products/inductor/index.html


The Q, or quality factor, of an inductor can be defined in terms of the peak energy 
stored in the device versus the energy dissipated per cycle. Keeping time constant, 
we can relate this to the power via the relation i2R. The current necessarily is the 
same for both the reactive and resistive components, therefore the Q of the coil is 
equal to the ratio of its reactance to its resistance at the frequency of interest.

Qcoil =
X L

Rcoil

(2.4)

Where
Qcoil is the quality factor of the inductor,
XL is the magnitude of the inductive reactance at the frequency of interest,
Rcoil is the resistance of the inductor at the frequency of interest.

In general, the higher the Qcoil, the better. As can be seen in Figure 2.20, Qcoil is not a 
constant. Indeed, it increases with frequency until a peak is reached, at which point it
begins to fall. 

When dealing with practical inductors, the effective Qcoil can be determined from a 
graph if the operating frequency is known. Once the Qcoil is found, the effective 
value of Rcoil can be found from Equation 2.4. This value can then be placed in series
with the ideal inductor to create a more accurate result. For analysis, this pair is 
sometimes drawn with a box around it to denote that Rcoil is not a separate physical 
resistor, but is the effective resistance of the inductor.

Example 2.9

Find the voltage across the inductor in the circuit of Figure 2.21. Assume
the source voltage is 200° peak-to-peak at a frequency of 20 kHz. L is
equal to 10 mH, Qcoil is 50, and R1 is 600 Ω.

Remember, the inductor consists of both elements within the dashed
box. First, find the magnitude of the inductive reactance.

| X L | = 2π f L
| X L | = 2π20 kHz 10 mH
| X L | = 1257Ω

We can now find Rcoil via Equation 2.4:

Qcoil =
X L

Rcoil

Therefore,
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Figure 2.21
Circuit for Example 2.9.



Rcoil =
X L

Qcoil

Rcoil =
1257
50

R coil = 25.1Ω

The impedance of the inductor is 25.1 + j1257 Ω , or 125788.9° Ω. The 
total impedance is 600 + 25.1 + j1257 Ω , or 140463.6° Ω. We can use a 
voltage divider to find the inductor's voltage.

vind = e
Z ind

Z Total

vind = 20 0° Vpp 1257 88.9°Ω
1404 63.6°Ω

vind = 17.9 25.3° Vpp

It is worth noting that, due to the coil resistance, the inductor's current and 
voltage are not precisely 90° out of phase, but rather 88.9°. That's a small 
but measurable deviation.

2.6 Summary2.6 Summary

A series connection is any connection in which the current through one component 
must be identical to the current flowing through any other component in that 
connection. This remains true for AC circuits employing resistors, capacitors and 
inductors. The equivalent impedance of a set of resistors, inductors and capacitors 
placed in series is the vector sum of their resistance and reactance values. Inductive 
and capacitive reactance have opposing signs and will partially cancel each other. 
While resistance remains constant across frequency, reactance does not. Capacitive 
reactance decreases with frequency while inductive reactance increases. Therefore, 
the precise impedance value will vary with frequency. If the impedance angle is 
positive, the circuit is said to be inductive. If the impedance angle is negative, the 
circuit is said to be capacitive.

Once inductance and capacitance values have been turned into their corresponding 
reactances at the frequency of interest, Ohm's law can be used to find the voltage 
across any component. The voltage will equal the product of the resistance or 
reactance and the current flowing through it. This is a vector computation. The 
current through a resistor will be in phase with the voltage across it. In contrast, the 
inductor voltage will lead the current and the resistor voltage by 90 degrees. Also, 
the capacitor voltage will lag the current and the resistor voltage by 90 degrees. 
From these observations it is apparent that the inductor and capacitor voltages in a 
series connection must be 180 degrees out of phase.
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Kirchhoff's voltage law (KVL) states that the sum of voltage rises around any series 
loop must equal the sum of voltage drops around that loop. This remains true for AC 
analysis, however, it is imperative that a vector summation is performed and not just 
a simple summation of the magnitudes. If the phase angles are ignored, it is possible 
for the voltage magnitudes to sum to considerably more than the source voltage.
The voltage divider rule (VDR) remains true for AC analysis, but again, it is a vector 
computation. Thus, a rendering using just magnitudes will not produce a correct 
result. For example, a divider between a resistor and inductive reactance of equal 
value will not yield the source voltage splitting in half across each component.

For highest accuracy, the coil resistance, or Rcoil, of inductors should not be ignored. 
It is treated as a small resistance in series with and integral to the inductor. Coil 
resistance is computed from the inductor's Q, or quality factor. Q is defined as the 
ratio of XL to Rcoil.

Review QuestionsReview Questions

1. How is the equivalent impedance for a string of series connected resistors, 
capacitors and inductors computed? 

2. Will the impedance of an RLC circuit be the same at all frequencies? 
Why/why not?

3. How are series connected AC voltage sources combined?
4. Does Kirchhoff's voltage law change for AC circuit analysis?
5. Is it possible for the voltage magnitudes of an AC RLC circuit to sum to 

more than the source voltage? Why/why not?
6. How is a phasor impedance plot for a series network related to its phasor 

voltage plot?

2.7 Exercises2.7 Exercises

AnalysisAnalysis

1. Determine the impedance of the circuit of Figure 2.22 for a 1 kHz sine.

2. Determine the impedance of the circuit of Figure 2.22 for a 5 kHz sine.
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Figure 2.22



3. Determine the impedance of the circuit of Figure 2.23 for a 10 kHz sine.

4. Determine the impedance of the circuit of Figure 2.23 for a 50 kHz sine.

5. Determine the impedance of the circuit of Figure 2.24 for a 1 kHz sine.

6. Determine the impedance of the circuit of Figure 2.24 for a 500 Hz sine.

7. Determine the impedance of the circuit of Figure 2.25.

8. In the circuit of Figure 2.25, if the input frequency is 100 Hz, what is the 
value of the inductor, in mH?

9. In the circuit of Figure 2.25, if the input frequency is 200 Hz, what is the 
value of the capacitor, in μF?

10. Draw the voltage and current waveforms for the circuit of Figure 2.26.
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Figure 2.23

Figure 2.24

Figure 2.25

Figure 2.26



11. Draw the voltage and current waveforms for the circuit of Figure 2.27.

12. Draw the voltage and current waveforms for the circuit of Figure 2.28 if E is
a one volt peak sine at a frequency of 10 kHz and C = 3.3 nF.

13. Draw the voltage and current waveforms for the circuit of Figure 2.29 if E is
a two volt peak-peak sine at a frequency of 40 Hz and L = 33 mH.

14. Draw the voltage and current waveforms for the circuit of Figure 2.30 if I is 
a 10 μA peak sine at a frequency of 2 kHz and C = 6.8 nF.
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Figure 2.27

Figure 2.28

Figure 2.29

Figure 2.30



15. Draw the voltage and current waveforms for the circuit of Figure 2.31 if I is 
a two amp peak-peak sine at a frequency of 40 Hz and L = 33 mH.

16. Determine the impedance of the circuit of Figure 2.32.

17. Determine the impedance of the circuit of Figure 2.32 using a frequency of 
10 kHz.

18. For the circuit of Figure 2.32, determine the circulating current and the 
voltages across each component. Draw a phasor diagram of the three 
component voltages. Also find the time delay between the voltages of the 
components.

19. For the circuit of Figure 2.32 using a frequency of 10 kHz, determine the 
circulating current and the voltages across each component. Draw a phasor 
diagram of the three component voltages and determine the time delay 
between the capacitor and resistor voltages.

20. Determine the impedance of the circuit of Figure 2.33.

21. Determine the impedance of the circuit of Figure 2.33 using a frequency of 
10 kHz.
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Figure 2.31

Figure 2.32

Figure 2.33



22. For the circuit of Figure 2.33, determine the circulating current and the 
voltages across each component. Also find the time delay between the 
voltages of the components.

23. For the circuit of Figure 2.33 with a frequency of 3 kHz, determine the 
circulating current and the voltages across each component. Also find the 
time delay between the voltages of the components.

24. For the circuit of Figure 2.34, determine the circulating current.

25. Determine the impedance of the circuit of Figure 2.34 using a frequency of 
1.5 kHz.

26. For the circuit of Figure 2.34, determine the circulating current and the 
voltages across each component. Also find the time delay between the 
voltages of the components.

27. For the circuit of Figure 2.34 with a frequency of 1.5 kHz, determine the 
circulating current and the voltages across each component. Also find the 
time delay between the voltages of the components.

28. For the circuit of Figure 2.35, determine the circulating current and the 
voltages across each component. Draw a phasor diagram of the three 
component voltages and determine the time delay between the inductor and 
resistor voltages..
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Figure 2.34

Figure 2.35



29. For the circuit of Figure 2.36, determine the circulating current and the 
voltages across each component.

30. For the circuit of Figure 2.37, determine the circulating current and the 
voltages across each component.

31. For the circuit of Figure 2.38, determine the applied voltage and the voltages
across each component.

32. For the circuit of Figure 2.39, determine the applied voltage and the voltages
across each component.
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Figure 2.37

Figure 2.38

Figure 2.39



33. For the circuit of Figure 2.40, determine the circulating current and the 
voltages across each component.

34. Repeat the previous problem using an input frequency of 10 kHz.

35. For the circuit of Figure 2.41, determine the circulating current and the 
voltages across each component. The source is a 10 volt peak sine at          
20 kHz, R = 200 Ω, C = 100 nF and L = 1 mH.

36. For the circuit of Figure 2.41, find vb and vac.

37. For the circuit of Figure 2.42, find vb and vac. The source is a 50 volt peak-
peak sine at 10 kHz, R = 100 Ω, C = 200 nF and L = 1 mH.

38. For the circuit of preceding problem, determine the circulating current and 
the voltages across each component. 
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Figure 2.41

Figure 2.42



39. For the circuit of Figure 2.43, determine the circulating current and the 
voltages across each component. E is a 1 volt peak 2 kHz sine. Also, draw a 
phasor diagram of the four component voltages.

40. For the circuit of Figure 2.43, find vb and vca. E is a 1 volt peak 2 kHz sine.

41. For the circuit of Figure 2.44, determine vb, vc and vac. E is a 10 volt peak    
15 kHz sine.

42. For the circuit of Figure 2.45, determine the circulating current and the 
voltages across each component. E is a 100 millivolt peak 250 Hz sine. 
Further, draw a phasor diagram of the four component voltages.
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43. For the circuit of Figure 2.46, determine the circulating current and the 
voltages across each component. E is a 2 volt RMS 1 kHz sine. Also, draw a 
phasor diagram of the four component voltages.

44. For the circuit of Figure 2.47, determine vb, vc and vac. E is a 1 volt peak     
25 kHz sine. 

45. For the circuit of Figure 2.48, determine the voltages across each 
component. The source is a 50 mA peak sine at 15 kHz, R = 200 Ω,             
C = 100 nF and L = 1.5 mH.
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46. For the circuit of Figure 2.49, determine vac, vb and vc. The source is a 10 mA
peak-peak sine at 50 kHz, R = 2 kΩ, C = 10 nF and L = 800 μH.

47. For the circuit of Figure 2.50, determine the voltages across each 
component. The source is a 2 mA RMS sine at 1 kHz, R = 1.2 kΩ,                
C = 750 nF and L = 6.8 mH.

48. For the circuit of Figure 2.51, determine vac, vb and va. The source is a 2 mA 
peak-peak sine at 300 kHz, R = 560 Ω, C = 6.8 nF and L = 400 μH. 
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49. For the circuit of Figure 2.52, determine the voltages across each 
component.

50. For the circuit of Figure 2.53, determine the voltages across each 
component. Further, draw a phasor diagram of the four component voltages.

51. For the circuit of Figure 2.54, find vac, vb and vc. The source is 5 mA peak at  
8 kHz.
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52. For the circuit of Figure 2.55, determine the voltages across each 
component. The source is 20 mA peak at 100 kHz.

53. For the circuit of Figure 2.56, determine the voltages across each 
component.

54. For the circuit of Figure 2.57, determine the voltages vb and vdb. E1 = 20º 
and E2 = 590º.

55. Determine the inductance and capacitance values for the circuit of    
problem 52.

56. For the circuit of Figure 2.57, determine the inductor and capacitor values if 
the source frequency is 12 kHz.
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57. For the circuit of Figure 2.58, determine the voltages across each 
component. E1 = 10º and E2 = 860º.

DesignDesign

58. Redesign the circuit of Figure 2.32 using a new capacitor such that the 
current magnitude from the source is 100 μA.

59. Redesign the circuit of Figure 2.33 using a new frequency such that the 
current magnitude from the source is 200 μA.

60. For the circuit of Figure 2.32, determine a new capacitor such that |XC| = R.

61. For the circuit of Figure 2.33, determine a new frequency such that |XL| = R.

ChallengeChallenge

62. For the circuit of Figure 2.40, determine a new frequency such that               
|XC| = |XL|.

63. Determine the output voltage across the capacitor of Figure 2.32 at 
frequencies of 100 Hz, 5 kHz and 20 kHz. In light of this, if the input signal 
was a 1 kHz square wave instead of a sine wave as pictured, how would this 
circuit affect the shape of the output waveform (hint: consider 
superposition)?

64. Assume that you are troubleshooting a circuit like the one shown in      
Figure 2.41. E is a 2 volt peak sine at 2 kHz, R = 390 Ω, C = 100 nF and       
L = 25 mH. The circulating current measures approximately 4 mA with a 
lagging phase angle of just under −40 degrees. What is the likely problem?

65. Given the circuit shown in Figure 2.41, find the values for C and L if the 
source is a 6 volt sine wave at 1 kHz, R = 2 kΩ, vR = 4 V and vL = 5 V.
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66. The circuit of Figure 2.59 can be used as part of a loudspeaker crossover 
network. The goal of this circuit is to steer the low frequency tones to the 
low frequency transducer (labeled here as “Loudspeaker” and often referred 
to as a woofer). A similar network substitutes a capacitor for the inductor to 
steer the high frequency tones to the high frequency transducer (AKA 
tweeter). These networks can be pictured as frequency sensitive voltage 
dividers. At very low frequencies, XC is very large and blocks low frequency
tones from reaching the tweeter. A mirror situation occurs with the 
inductor/woofer variant. The crossover frequency is the frequency at which 
the reactance magnitude equals the resistance. Assuming simple 8 Ω 
resistances for the woofer and tweeter, determine capacitor and inductor 
values that would yield a 1.5 kHz crossover frequency. How might this 
concept be extended to a mid-range loudspeaker that only produces tones in 
the middle of the musical frequency spectrum? (Note, this concept will be 
revisited in the final simulation problem, below, and also in the Simulation 
portion of Chapter 4 which covers series-parallel circuits.) 

SimulationSimulation

67. Simulate the solution of design problem 58 and determine if the values 
produce the required results.

68. Simulate the solution of design problem 59 and determine if the values 
produce the required results.

69. Simulate the solution of design problem 60 and determine if the values 
produce the required results. Hint: if the reactance/resistance magnitudes are
the same, then the voltage magnitudes will be identical.

70. Simulate the solution of design problem 61 and determine if the values 
produce the required results. Hint: if the reactance/resistance magnitudes are
the same, then the voltage magnitudes will be identical.
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71. Simulate the solution of challenge problem 62 and determine if the new 
frequency produces the required results. Hint: if the reactance magnitudes 
are the same, then the voltage magnitudes will be identical. Further, their 
phases will cause these voltages to cancel, leaving the resistor voltage equal 
to the source voltage.

72. Using a transient analysis, crosscheck the crossover design of the final 
challenge problem, above. Plot the resistor (loudspeaker) voltage across the 
range of 100 Hz to 20 kHz for both sections.
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3 3 Parallel RLC CircuitsParallel RLC Circuits

3.0 Chapter Learning Objectives3.0 Chapter Learning Objectives

After completing this chapter, you should be able to: 

• Utilize Kirchhoff's current law, the current divider rule and Ohm's law to find branch currents in parallel
RLC networks that utilize current sources or a single voltage source.

• Compute complex impedance and system voltage in parallel RLC circuits.

• Determine the equivalent value of multiple AC current sources in parallel.
• Draw phasor diagrams for impedance/susceptance and component currents in parallel RLC circuits.

3.1 Introduction 3.1 Introduction 

In this chapter we introduce the analysis of AC RLC circuits configured in parallel. AC parallel circuits echo the 
characteristic of their DC counterpart and many of the solution techniques from DC analysis will be applicable 
here. This includes the use of Ohm's law and Kirchhoff's current law, along with the current divider rule. 
Generally, as with the series circuits presented in the previous chapter, reactance values will need to be 
computed from capacitor and inductor values before the main analysis may begin. Here, as in the most of the 
remaining chapters, we shall be concerned with determining the circuit response based on a source with a single 
frequency of excitation, in other words, a simple sine wave.

Parallel circuits are in many ways the complement of series circuits. The most notable characteristic of a parallel
circuit is that it has only two nodes and each component is connected from one node to the other. There are no 
other connections with which to create a voltage divider. Consequently, all components see the same voltage. 
Currents divide among the components in proportion to their conductance/susceptance (i.e., in inverse 
proportion to their resistance/reactance). 

 The key to this is to remember that all computations involve vector quantities. This can lead to some surprising 
results for the uninitiated. For example, due to the 180 degree phase differential between inductors and 
capacitors, it is possible for an individual branch current to be greater than the source current. This does not 
violate Kirchhoff's current law, as we shall see. Indeed, it is reminiscent of a similar situation in AC series 
circuits where an individual component voltage can be greater than the source voltage without violating 
Kirchhoff's voltage law. 

To clarify our analyses, we shall make considerable use of both time domain plots of currents as well as phasor 
diagrams. 
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3.2 The Parallel Connection3.2 The Parallel Connection

A parallel connection is always characterized by having all components share just 
two nodes. There are no other junctions from which current can flow out of or into, 
or for voltage to split. Consequently, 

The voltage is the same everywhere in a parallel connection. (3.1)

Each component in such a connection will see the same voltage, regardless of 
whether it is a resistor, capacitor or inductor. Before the branch currents can be 
determined, the capacitive and inductive reactance values must be computed. As 
seen from prior work, these are obtained from the capacitor and inductor values, and
based on the frequency of the driving source. Consequently, if this frequency were to
change, the reactances would change, and this would in turn cause changes in the 
various component currents as well as the total current delivered by the source. 

3.3 Parallel Impedance 3.3 Parallel Impedance 

Perhaps the first order of business is to determine equivalent impedance values for 
some collection of parallel components. Recall that the reciprocal of reactance is 
susceptance,

B =
1
X

(3.2)

and that the reciprocal of impedance is admittance,

Y =
1
Z

(3.3)

The units are siemens for each. It is also worth noting that, due to the division, the 
signs reverse. For example, a capacitive susceptance has an angle of +90 degrees 
and if a complex admittance has a negative angle, then the associated impedance is 
inductive.

The “conductance rule” for parallel combinations studied in the DC case remains 
valid for the AC case, although we generalize it for impedances:
  

Z total =
1

1
Z1

+
1

Z 2

+
1
Z3

+...+
1

Z N

(3.4)
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Each of the individual impedances presented in Equation 3.4 (i.e., Z1, Z2, etc) can 
represent a simple resistance, a pure reactance or a complex impedance. Further, the 
product-sum rule shortcut for two components also remains valid for AC 
components:

Z total =
Z 1×Z 2

Z 1+Z 2

(3.5)

There is one special case where Equation 3.5 can be “troublesome”, and that's when 
the two impedances consist of a pure capacitive reactance and a pure inductive 
reactance, both of the same magnitude. The two items will effectively cancel each 
other leaving a denominator of zero and an undefined result. While the theoretical 
combination “blows up” and approaches infinity, in reality it is limited by associated
resistances such as Rcoil, and arrives at some finite value This situation is studied in 
great depth in Chapter 8, which covers the concept of resonance.

Example 3.1

Determine the impedance of the network shown in Figure 3.1.

Equation 3.4 would be best here.

Z total =
1

1
Z1

+
1
Z 2

+
1
Z 3

Z total =
1

1
j 12 kΩ

+
1

20 k Ω
+

1
− j 48 kΩ

 
Z total = 12.49E3 51.3° Ω

This result might be a little surprising to the sharp-eyed. Notice that the 
magnitude of the total is larger than the magnitude of the smallest 
component (the inductor at j12 kΩ). This would never be the case if these 
three components were all resistors: the result would have to be smaller than
the smallest element in the group. 

The reason for this is that the capacitive reactance partially cancels the 
inductive reactance. If the product-sum rule (Equation 3.5) is used with 
these two components, the result is 16E390° or j16 kΩ. Placing that in 
parallel with the 20 kΩ resistor (again using Equation 3.5) leads to the result
computed above.

An admittance diagram is illustrated in Figure 3.2. The vector summation of 
the component conductance and susceptances is verified nicely. 
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Figure 3.1
Circuit for Example 3.1.



The individual component values are:

BL =
1

j 12 kΩ
≈− j 83.33E-6 S

BC =
1

− j 48k Ω
≈ j 20.83E-6S

G =
1

20 kΩ
= 50E-6 S

Y total =
1

12.49E3 51.3°Ω
≈ 80.1E-6−51.3° S

In rectangular form Ytotal = 50E−6 − j62.5E−6 S.
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Figure 3.2
Admittance diagram for the 
network of Figure 3.1.



Example 3.2

Determine the impedance of the network shown in Figure 3.3 at a
frequency of 10 kHz. Repeat this for a frequency of 1 kHz.

First, find the reactances at 10 kHz. For the inductor we find:

X L = j 2π f L
X L = j 2π10 kHz680μ H
X L ≈ j 42.73Ω

And for the capacitor:

X C =− j
1

2 π f C

X C =− j
1

2 π10kHz 470 nF
X C ≈− j 33.86Ω

Now use Equation 3.4 to combine the elements.

Z total =
1

1
Z 1

+
1
Z2

+
1
Z3

Z total =
1

1
j 42.73Ω

+
1

1.8k Ω
+

1
− j 33.86Ω

 
Z total = 162.6−84.8°Ω

In rectangular form this is 14.68 − j161.9 Ω. As the capacitor's reactance is 
the smallest of the three components, it dominates the equivalent impedance 
at this frequency. By working the capacitive reactance formula in reverse, it 
can be shown that the reactive portion of − j161.9 Ω can achieved at this 
frequency by using a capacitance of 98.3 nF. That means that at 10 kHz, this 
parallel network has the same impedance as a 14.68 Ω resistor in series with 
a 98.3 nF capacitor. At any other frequency this will no longer be true, as 
will be illustrated momentarily. 

At 1 kHz, the frequency is reduced by a factor of ten. Therefore, XL will be 
ten times lower, or approximately j4.273 Ω. Further, XC will be ten times 
higher, or about − j338.6 Ω. The inductive reactance will now dominate.

The new impedance is:
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Figure 3.3
Circuit for Example 3.2.



Z total =
1

1
Z1

+
1
Z 2

+
1
Z 3

Z total =
1

1
j 4.273Ω

+
1

1.8k Ω
+

1
− j 338.6Ω

 
Z total = 4.328 89.9°Ω

In rectangular form this is 10.4E−3 + j4.328 Ω. The result is inductive, the 
opposite of what we saw at 10 kHz. Using the inductive reactance formula, 
it can be shown that at 1 kHz this parallel network has the same impedance 
as a 10.4 milliohm resistor in series with a 689 μH inductor.

3.4 Parallel Circuit Analysis 3.4 Parallel Circuit Analysis 

Kirchhoff's current law (KCL) is the operative rule for parallel circuits. It states that 
the sum of all currents entering and exiting a node must equal zero. Alternately, it 
can be stated as the sum of currents entering a node must equal the sum of currents 
exiting that node. As a pseudo formula: 

∑ I→ = ∑ I← (3.6)

A similar situation occurs in AC parallel circuits to that seen AC series circuits; 
namely that it appears that KCL (like KVL) is “broken”. That is, a simplistic 
summing of the magnitudes of the currents might not balance. Once again, this is 
because the summation must be a vector summation, paying attention to the phase 
angles of each separate current. 

It is possible to drive a parallel circuit with multiple current sources. These sources 
will add in much the same way that voltage sources in series add, that is, polarity 
and phase must be considered. Ordinarily, voltage sources with differing values are 
not placed in parallel as this violates the basic rule of parallel circuits (voltage being 
the same across all components).

The current divider rule remains valid for AC parallel circuits. Given two 
components, Z1 and Z2, and a current feeding them, IT, the current through one of the 
components will equal the total current times the ratio of the opposite component 
over the sum of the impedance of the pair.

i1 = iT

Z 2

Z 1+Z 2

(3.7)
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This rule is convenient in that the parallel equivalent impedance need not be 
computed, but remember, it is valid only when there are just two components 
involved. 

When analyzing a parallel circuit, if it is being driven by a voltage source, then this 
same voltage must appear across each of the individual components. Ohm's law can 
then be used to determine the individual currents. According to KCL, the total 
current exiting the source must be equal to the sum of these individual currents. For
example, in the circuit shown in Figure 3.4, the voltage E must appear across both 
R and L. Therefore, the currents must be iL = E / XL and iR = E / R, and itotal = iL + iR. 
itotal can also be found be determining the parallel equivalent impedance of R and 
XL, and then dividing this into E. This technique can also be used in reverse in order 
to determine a resistance or reactance value that will produce a given total current: 
dividing the source by the current yields the equivalent parallel impedance. As one 
of the two is already known, the known component can be used to determine the 
value of the unknown component via Equation 3.4.

Example 3.3

Determine the currents in the circuit shown in Figure 3.4 if the source is 
100º volts peak, XL = j2 kΩ and R = 1 kΩ

The same voltage must appear across all elements in a parallel connection. 
In this case that's 100º volts peak. The two branch currents are found via 
Ohm's law:

iL =
v
Z

iL =
10 0° V

j2 kΩ
iL = 5E-3−90° A

iR =
v
Z

iR =
10 0° V

1k Ω
iR = 10E-3 0° A

The source current is the sum of the these two currents, or 11.18E−3−26.6º
amps. This can be verified by determining the equivalent parallel impedance
and then applying Ohm's law:
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Figure 3.4
A simple parallel RL circuit.



ZT =
Z 1×Z 2

Z 1+Z 2

ZT =
1k Ω× j 2k Ω
1k Ω+j 2k Ω

ZT = 894 26.6°Ω

As a side note, in rectangular form this is 800 + j400, meaning that this 
parallel combination is equivalent to a series combination of an 800 ohm 
resistance and a 400 ohm inductive reactance. Continuing with Ohm's law, 
we have:

iSource =
v

Z T

iSource =
10 0° V

894 26.6°Ω
iSource = 11.18E-3−26.6° A

 A phasor diagram of the currents is shown in Figure 3.5, below.

Current Measurement in the LaboratoryCurrent Measurement in the Laboratory

At this point, a practical question arises; how do we verify these currents in the 
laboratory? After all, the preeminent measurement tool is the oscilloscope, and these
are designed to measure voltage, not current. While it is possible to obtain current 
measurement probes, a simple method to measure current is to use a small current 
sensing resistor with a standard oscilloscope setup. We have seen already that the 
voltage across a resistor must be in phase with the current through it. Therefore, 
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Figure 3.5
Phasor diagram of currents in 
the circuit of Figure 3.4.



whatever phase angle we see on a resistor's voltage, its current phase angle must be 
the same. The idea is to simply insert a resistor into the branch of which we wish to 
measure the current. As long as the resistance is much smaller than the impedance 
seen in the rest of that branch, it will have little impact on the precise value of the 
current. We can then place a probe across this sensing resistor to read its voltage. 
Ohm's law is then be used to determine the current's magnitude, while the phase 
angle is obtained directly from the oscilloscope (again, because the sensing resistor's
voltage must be in phase with its current, and thus the voltage phase angle is equal to
the current phase angle). This technique will be illustrated in the simulation portion 
of the next example problem.

Example 3.4

Determine the branch currents in the circuit of Figure 3.6.

The first step is to determine the capacitive reactance.

X C =− j
1

2 π f C

X C =− j
1

2 π500 Hz 250 nF
X C ≈− j 1273Ω

Both the resistor and capacitor will see 20 volts peak from the source. Their 
currents can be determined via Ohm's law:

iC =
v

X C

iC =
20 V

1273 − 90°Ω
iC ≈15.71E-3 90° A

iR =
v
R

iR =
20 V

220 0°Ω
iR ≈90.91E-3 0° A

The source current is the sum of these two currents, or 92.26E−39.8° 
amps. The source current may also be determined by dividing the source 
voltage by the equivalent parallel impedance, as follows. 
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Figure 3.6
Circuit for Example 3.4.



ZT =
Z 1×Z 2

Z 1+Z 2

ZT =
220Ω×(− j 1273Ω)

220Ω− j 1273 k Ω
ZT = 216.8−9.8°Ω

iSource =
v

Z T

iSource =
20 0° V

216.8−9.8°Ω
iSource = 92.26E-3 9.8° A

A time domain plot of the currents is illustrated in Figure 3.7 along with a 
phasor plot in Figure 3.8. Note that the source current is close in both 
amplitude and phase to the resistor current. By comparison, the capacitor 
current is considerably smaller and with an obvious leading phase shift.
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Figure 3.7
Current waveforms for the 
circuit of Figure 3.6.

Figure 3.8
Phasor diagram for the circuit
of Figure 3.6.



Computer SimulationComputer Simulation

The circuit of Figure 3.6 is captured in a simulator as shown in Figure 3.9. 
Individual 2 ohm resistors are used to sense the currents in the resistor and capacitor 
branches. These sensing resistors are inserted directly above ground for convenience
of measure. In this way a differential measurement is not needed.

The value of a sensing resistor needs to be considerably smaller than the impedance 
of the branch in which it is inserted. Two orders of magnitude (i.e., less than 1 %) 
would be a good place to start. While even smaller values will increase accuracy, 
from a practical standpoint in the lab, such tiny resistor values would produce 
extremely small voltages that would be difficult to measure with great accuracy. 
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Figure 3.9
Circuit of Figure 3.6 in a 
simulator with added current 
sensing resistors.

Figure 3.10
Simulation results for the 
circuit of Figure 3.9.



A basic transient analysis is then performed as shown in Figure 3.10. The results of 
the simulation are in tight agreement with the plot of Figure 3.7. Note that the 
plotted resistor and capacitor “currents” are, in fact, the voltages across the 
associated sensing resistors (nodes 2 and 3) divided by 2 (ohms), in direct 
application of Ohm's law. Not only does the simulation verify the results computed 
earlier, it also validates the concept of using small current sensing resistors in the 
laboratory.

Example 3.5

Determine the the branch currents in the circuit of Figure 3.11. Use the
source voltage as the reference (0° ).

Although this circuit is drawn a little differently than the prior examples, it 
remains a simple parallel circuit with just two nodes. Therefore, each 
element sees a 2 volt peak potential. Ohm's law will suffice to find the three 
component currents. These are then added to find the source current. Their 
reference directions are right-to-left given the source's polarity.

iC =
v

X C

iC =
2 0° V

12 −90°Ω
iC ≈0.1667 90° A

iL =
v

X L

iL =
2 0° V
8 90 °Ω

iL = 0.25−90 ° A

iR =
v
R

iR =
2 0° V

10 0°Ω
iR = 0.2 0° A

The sum of these three currents is approximately 0.2167−22.6° amps. This
value can be verified by finding the combined parallel impedance. Using 
Equation 3.4 it can be shown that this impedance is 9.23122.6° Ω. Thus,
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Figure 3.11
Circuit for Example 3.5.



iSource =
v
Z

iSource =
2 0° V

9.231 22.6°Ω
iSource ≈0.2167−22.6° A

A phasor diagram showing the vector summation of the currents is 
illustrated in Figure 3.12. 

Note that iC and iL are in perfect opposition as expected. Subtracting the 
magnitude of iC from iL leaves us with the precise vertical component of the 
source current.
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Figure 3.12
Current phasor diagram for  
the circuit of Figure 3.11.



If a parallel circuit is driven by a current source, as shown in Figure 3.13, there are
two basic methods of solving for the component currents. The first method is to use
the current divider rule. If desired, the component voltage can then be found using
Ohm's law. An alternate method involves finding the parallel equivalent impedance
first and then using Ohm's law to determine the voltage (remember, being a parallel 
circuit, there is only one common voltage). Given the voltage, Ohm's law can be 
used to find the current through one component. To find the current through the 
other, either Ohm's law can be applied a second time or KCL may be used; 
subtracting the current through the first component from the source current. If there 
are more than two components, usually the second method would be the most 
efficient course of action.

It is worth noting that both methods described above will yield the correct answers. 
One is not “more correct” than the other. We can consider each of these as a separate
solution path; that is, a method of arriving at the desired end point. In general, the 
more complex the circuit, the more solution paths there will be. This is good because
one path may be more obvious to you than another. It also allows you a means of 
crosschecking your work.

Example 3.6

Determine the currents in the circuit of Figure 3.13 if the source is 300 
milliamps peak at 10 kHz, R is 750 Ω and L is 15 mH. 

The first step is to determine the inductive reactance.

X L = j 2π f L
X L = j 2π10 kHz15 mH
X L ≈ j 942.4Ω

The current divider rule can be used to find the current through the resistor.

iR = iSource

X L

R+X L

iR = 0.3 0° A 942.4 90 ° Ω
750 0°Ω +942.4 90°Ω

iR = 0.2347 38.5 ° A

KVL can be used to find the remaining current through the inductor as the 
source current must equal the sum of the inductor and resistor currents. 
Therefore:
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Figure 3.13
Parallel network driven by a 
current source.



iL = iSource−i R

iL = 0.3 0° A −0.2347 38.5° A
iL = 0.1868−51.5° A

This value could also have been obtained by applying the current divider 
rule a second time:

iL = iSource
R

R+X L

iL = 0.3 0° A 750 0°Ω
750 0°Ω+942.4 90 °Ω

iL = 0.1868−51.5° A

A time domain plot of the current waveforms is shown in Figure 3.14. 

From the plot it is apparent that the inductor and resistor currents do indeed 
add up to the source current. Further, the current through the inductor is 
lagging, as expected.
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Figure 3.14
Current waveforms for the 
circuit of Example 3.6.
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Computer SimulationComputer Simulation

The circuit of Example 3.6 is captured in a simulator as shown in Figure 3.15. A pair
of 1 ohm current sensing resistors have been added. By using 1 ohm, the sensing 
voltage will have the same magnitude as the current, with no scaling required.

A transient analysis is performed, plotting the voltages at nodes 2 and 3 along with 
their sum (the source current). The results are shown in Figure 3.16. The plot is 
delayed for a millisecond in order to avoid the initial power-up transient. The results 
are in full agreement with the plot of Figure 3.14.
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Figure 3.15
Circuit of Example 3.6 in a 
simulator.

Figure 3.16
Results of the transient 
response simulation for the 
circuit of Example 3.6.



Example 3.7

Determine the branch currents in the circuit of Figure 3.17. Use the current 
source as the time reference (i.e., 0°).

Instead of using repeated current dividers here, we can instead find the 
equivalent impedance and then apply Ohm's law to determine the system 
voltage. Each branch current may be obtained by dividing this voltage by the
impedance of that branch; a quick application of Ohm's law.

The system impedance is computed through Equation 3.4 as follows:

Z total =
1

1
Z 1

+
1
Z 2

+
1
Z 3

Z total =
1

1
− j 12Ω

+
1

j 8Ω
+

1
10Ω

 
Z total = 9.231 22.6°Ω

The system voltage is found using Ohm's law. As the reference direction of 
the current source is flowing down into ground, the branch currents will be 
flowing up. This makes their voltage reference negative with respect to 
ground (i.e., + to − from bottom to top). We can deal with this by describing 
the current source as negative (i.e., flowing out of the top node). The source 
can be written as either −10° or as 1180°, it makes no difference.

v = i source×Z total

v =−1 0° A×9.231 22.6°
v ≈−9.231 22.6 ° V

This potential may also be written as 9.231−157.4° volts (remember, an 
inversion is the same as a 180 degree phase shift). 

And now for the branch currents:
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Figure 3.17
Circuit for Example 3.7.



iC =
v

X C

iC =
9.231−157.4° V

12 − 90° Ω
iC ≈0.7692−67.4 ° A

iL =
v

X L

iL =
9.231−157.40° V

8 90°Ω
iL = 1.154 112.6° A

iR =
v
R

iR =
9.231−157.4 ° V

10 0°Ω
iR = 0.9231−157.4 ° A

The sum of these three currents is approximately 1180° amps (i.e., 
−10°), the value of the current source, as expected. 

A phasor diagram of the currents is plotted in Figure 3.18.
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Figure 3.18
Current phasor diagram for  
the circuit of Figure 3.16.



Now for the sneaky bit. In case you didn't notice, the components in this 
circuit are identical to those of Figure 3.11 with the exception of the source. 
As a consequence, the phase angles and magnitudes of the branch currents 
through the three components will remain unchanged relative to each other. 
Due to the change in both magnitude and direction of the source, the entire 
phasor plot has been rotated clockwise by 154.7 degrees and all of the 
magnitudes have been lengthened by the ratio of the voltages (9.231 / 2). 
This is perhaps easiest to see by focusing on the vector for isource in Figure 
3.12. Rotate that vector clockwise, along with every other vector, until isource 
lines up with the negative real axis. The result is the plot of Figure 3.18, 
albeit with newly lengthened magnitudes.

If a parallel circuit contains multiple current sources, they may be added together (a 
vector sum, of course) to generate an equivalent single current source. The analysis 
then proceeds as before. This is demonstrated in the following example.

Example 3.8

For the circuit of Figure 3.19, determine the currents through the capacitor, 
inductor and resistor, and also determine the system voltage. i1 is 0.50° 
amps and i2 is 345° amps.

The first step here is to determine the effective current driving the circuit. If 
we treat the top node as positive, i2 is entering (positive) while i1 is exiting 
(negative). The combination is:

i total = i1 +i2

i total =−0.5 0° A +3 45° A
i total = 2.67 52.6° A

This current has the same reference direction as source two. A phasor 
diagram of the process is illustrated in Figure 3.20 to help visualize the 
vector addition.

98

Figure 3.19
Circuit for Example 3.8.



The next step is to find the combined impedance so that we can find the 
applied voltage.

Z total =
1

1
Z1

+
1

Z 2

+
1
Z 3

Z total =
1

1
− j 100 Ω

+
1

j 50Ω
+

1
40 Ω

 
Z total = 37.14 21.8°Ω

v = i source×Z total

v = 2.67 52.6° A×37.14 21.8°
v ≈99.16 74.4° V

We now apply Ohm's law to each of the components to determine the branch
currents. 

iC =
v

X C

iC =
99.16 74.4° V
100 − 90° Ω

iC ≈0.9916 164.4° A

iL =
v

X L

iL =
99.16 74.4 ° V

50 90° Ω
iL = 1.983−15.6° A
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Figure 3.20
Phasor diagram of the 
combined current sources for 
the circuit for Example 3.8.



iR =
v
R

iR =
99.16 74.4° V

40 0°Ω
iR = 2.479 74.4 ° A

The sum of these three currents is approximately 2.6752.6° amps. This 
balances the net entering current from the two sources, verifying KVL. 

3.5 Summary3.5 Summary

In this chapter we have examined parallel circuits using either a single voltage 
source, or one or more AC current sources, along with two or more resistors, 
capacitors and inductors. The defining characteristic of a parallel configuration is 
that all components are connected to just two nodes and that all elements in this 
configuration see the same voltage. If multiple AC current sources are present, they 
may be combined into a single equivalent current source via vector addition. 

Unlike the purely resistive case, the equivalent impedance of a group of parallel RLC

components will not always be smaller than the smallest resistance or reactance in 
the group due to cancellations between the inductance and capacitance. As voltage is
identical for all components, then the currents through the capacitors must be 180 
degrees out of phase with the currents through the inductors. Thus it is quite possible
that the current through one of the reactance branches could be larger than the 
current supplied by the source. In general, the effective impedance is found by 
summing the individual conductances and susceptances to find the total admittance 
of the group, and then taking the reciprocal of this value. The product-sum rule may 
be used so long as the angles are taken into account (i.e., a vector process). 

Kirchhoff's current law (KCL) states that the sum of currents entering a node must 
equal the sum of currents leaving that node. This remains true for AC circuit 
analysis, however, it must be remembered to always use a vector summation. A 
simple summation of current magnitudes will not achieve proper results.

Individual branch currents in a circuit driven by a voltage source may be determined
by using Ohm's law: simply divide the source voltage by the individual resistance 
and reactance values. These branch currents must sum to the total current delivered 
by the voltage source thanks to KCL. If the parallel network is driven by current 
sources, the individual branch currents can be found by first determining the 
effective parallel impedance and then using Ohm's law to find the system voltage. 
Once the voltage is known, Ohm's law is used again on each component to find the 
associated branch current. Alternately, the current divider rule may be used 
repeatedly on successive pairings of components. 
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Review QuestionsReview Questions

1. How is the equivalent impedance for a group of parallel connected resistors, 
inductors and capacitors computed? 

2. How is the equivalent value for parallel connected AC current sources 
computed?

3. Is the product-sum rule still applicable for AC analysis? Can it be used for 
reactance and/or complex impedance?

4. Define Kirchhoff's current law for AC circuit analysis.
5. Is it possible for a branch current to be larger than the source current in an 

AC parallel circuit? Explain why/why not.

3.6 Exercises3.6 Exercises

AnalysisAnalysis

1. Determine the effective impedance of the network shown in Figure 3.21 at   
10 MHz.

2. Determine the effective impedance of the network shown in Figure 3.22 at 
100 Hz.

3. Determine the effective impedance of the network shown in Figure 3.23 at   
5 kHz.
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Figure 3.21

Figure 3.22

Figure 3.23



4. Determine the effective impedance of the network shown in Figure 3.24 at   
20 kHz.

5. Determine the effective impedance of the network shown in Figure 3.25.

6. Determine the effective impedance of the network shown in Figure 3.25 if 
the frequency is halved and if the frequency is doubled.

7. For the network shown in Figure 3.21, determine the frequency below which
the impedance is mostly resistive.

8. For the network shown in Figure 3.22, determine the frequency below which
the impedance is mostly inductive.

9. Draw phasor impedance plot for problem 1.

10. Draw phasor impedance plot for problem 2.

11. Determine the three branch currents for the circuit shown in Figure 3.26 and
draw their phasor diagram.

12. Determine the three branch currents for the circuit shown in Figure 3.27 and
draw their phasor diagram.
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13. Determine the four branch currents for the circuit shown in Figure 3.28 and 
draw their phasor diagram.

14. Determine all of the branch currents for the circuit shown in Figure 3.29 
assuming E is a 1 volt RMS sine.

15. Determine all of the branch currents for the circuit shown in Figure 3.30 
given E = 10 volt peak sine, R = 220, XC = −j500. and XL = j1.5 k.

16. Determine all of the branch currents for the circuit shown in Figure 3.31 
given E = 2 volt peak sine, R = 1 k, XC = −j2 k. and XL = j3 k.
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17. Determine the component currents for the circuit shown in Figure 3.32. 
Draw phasor diagram of the source and branch currents.

18. Determine the resistor and capacitor voltages for the circuit shown in  
Figure 3.32.

19. Determine the resistor and inductor voltages for the circuit shown in    
Figure 3.33.

20. Determine the component currents for the circuit shown in Figure 3.33. 
Draw phasor diagram of the source and branch currents.

21. Determine the source voltage for the circuit shown in Figure 3.34. 

22. Determine the component currents for the circuit shown in Figure 3.34. 
Draw the phasor diagram of the source and branch currents.

23. Determine the component currents for the circuit shown in Figure 3.35. I is 
20 mA at 0 degrees.
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24. Determine the source voltage for the circuit shown in Figure 3.35. I is        
20 mA at 0 degrees.

25. Determine the source voltage for the circuit shown in Figure 3.36. Assume 
I1 is 1 mA at 0 degrees and I2 is 2 mA at +90 degrees.

26. Determine the capacitor and inductor currents in the circuit of Figure 3.36. 
Assume I1 is 1 mA at 0 degrees and I2 is 2 mA at +90 degrees.

27. Determine the resistor and capacitor currents in the circuit of Figure 3.37. 
Assume I1 is 20° amps and I2 is 0.545°.

28. Determine the source voltage for the circuit shown in Figure 3.37. Assume 
I1 is 20° A and I2 is 0.545°.

DesignDesign

29. For the network shown in Figure 3.38, determine a value of C such that the 
impedance magnitude of the circuit is 1 kΩ. The source is a 50 Hz sine and 
R is 2.2 kΩ.
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30. For the network shown in Figure 3.39, determine a value of L such that the 
impedance magnitude of the circuit is 2 kΩ. The source is a 2 MHz sine and 
R is 3.3 kΩ.

31. For the circuit shown in Figure 3.38, determine a value for C such that the 
magnitude of the source current is 1 mA. E is a 2 volt 10 kHz sine and        
R = 8 kΩ.

32. For the network shown in Figure 3.39, determine a value for L such that the 
magnitude of the source current is 10 mA. E is a 25 volt 100 kHz sine and   
R = 4 kΩ.

33. For the network shown in Figure 3.40, determine a value of C such that the 
impedance magnitude of the circuit is 10 k Ω. The source is a 440 Hz sine 
and R is 33 kΩ.

34. For the network shown in Figure 3.41, determine a value of L such that the 
impedance magnitude of the circuit is 200 Ω. The source is a 60 Hz sine and
R is 680 Ω.

35. For the circuit shown in Figure 3.40, determine a value for C such that the 
magnitude of the circuit voltage is 200 volts. The source current is a 100 mA
1200 Hz sine and R = 15 kΩ.

36. For the circuit shown in Figure 3.41, determine a value for L such that the 
magnitude of the circuit voltage is 50 volts. The source current is a 2.3 A    
60 Hz sine and R = 330 Ω.

106

Figure 3.39

Figure 3.40

Figure 3.41



37. Given the circuit shown in Figure 3.38, determine a value for C such that the
impedance angle is −45 degrees. The source a 1 volt peak sine at 600 Hz and
R = 680 Ω.

38. Given the circuit shown in Figure 3.39, determine a value for L such that the
impedance angle is 45 degrees. The source a 10 volt peak sine at 100 kHz 
and  R = 1.2 kΩ.

39. Determine a value for C such |XC| = |XL| for the circuit shown in Figure 3.42.
The source frequency is 1 kHz, R = 200 Ω and L = 50 mH. 

40. Determine a value for L such |XC| = |XL| for the circuit shown in Figure 3.43.
The source frequency is 22 kHz, R = 18 kΩ and C = 5 nF. 

41. Add one or more components in parallel with the circuit of Figure 3.22 such 
that the resulting impedance at 20 Hz is 10 Ω with a phase angle of at least 
+30°.

ChallengeChallenge

42. Determine a value for C such that the impedance angle for the circuit shown
in Figure 3.42 is purely resistive (0 degrees). The source frequency is 1 kHz,
R = 200 Ω and L = 50 mH. 

43. Is it possible to change the value of the resistor in Figure 3.34 so that the 
system voltage is 4 volts? If so, what is the value? If not, why not?

44. Is it possible to change the value of the inductor and/or capacitor in Figure 
3.34 so that the system voltage is 4 volts? If so, what is/are the values? If 
not, why not?
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45. Assume you are troubleshooting a circuit like the one shown in Figure 3.43. 
I is a 10 mA peak sine at 2 kHz, R = 390 Ω, C = 200 nF and L = 25 mH. The
measured resistor voltage is a little under 2.5 volts. What is the likely 
culprit?

46. Given the circuit shown in Figure 3.43, find the values for C and L if the 
source is a sine wave at 1 kHz, R = 4 kΩ, iSource = 3 mA, iR = 2 mA,               
iL = 5 mA,

SimulationSimulation

47. Using a transient analysis simulation, verify that the source current 
magnitude is 1 mA using the capacitor value determined in design    
problem 31.

48. Using a transient analysis simulation, verify that the source current 
magnitude is 10 mA using the inductor value determined in design    
problem 32.

49. Using a transient analysis simulation, verify that the source voltage 
magnitude is 200 volts using the capacitor value determined in design 
problem 35.

50. Using a transient analysis simulation, verify that the source voltage 
magnitude is 50 volts using the inductor value determined in design  
problem 36.

51. Using a transient analysis simulation, verify the design solution for   
problem 39. This can be checked by seeing if the current magnitudes in C 
and L are identical.

52. Using a transient analysis simulation, verify the design solution for   
problem 40. This can be checked by seeing if the current magnitudes in C 
and L are identical.

53. Impedance magnitude as a function of frequency can be investigated by 
driving the circuit with a fixed amplitude current source across a range of 
frequencies. The resulting voltage will be proportional to the effective 
impedance. Investigate this effect by performing an AC analysis on the 
circuits shown in Figures 3.32 and 3.33. Use a frequency range of 10 Hz to 
1 MHz. Before running the simulations, sketch your expected results. 

54. Following the idea presented in the previous problem, investigate the 
impedance as a function of frequency of the circuit shown in Figure 3.43. 
Use R = 1 k, C = 10 nF, and L = 1 mH. Run the simulation from 100 Hz to 
10 MHz. Make sure to sketch your expected results first. 
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4 4 Series-Parallel RLC CircuitsSeries-Parallel RLC Circuits

4.0 Chapter Learning Objectives4.0 Chapter Learning Objectives

After completing this chapter, you should be able to: 

• Identify series-only and parallel-only sub-groups in series-parallel RLC networks. 
• Compute complex equivalent impedance for series-parallel RLC circuits.
• Simplify an entire RLC network into a simple series or parallel equivalent comprised of complex 

impedances. 
• Utilize KVL, KCL and other techniques to find various voltages and currents in series-parallel RLC 

networks driven by a single effective voltage or current source.
• Interpret phasor diagrams and time domain plots for component voltages and/or currents in series-

parallel RLC circuits.

4.1 Introduction4.1 Introduction

Having completed our examination of strictly series and strictly parallel AC circuits, we turn our attention now 
to somewhat more complex circuits, namely those circuits comprised of components in mixed series-parallel 
arrangements. This chapter deals with a subset of series-parallel RLC circuits, specifically those that are driven 
by a single effective current or voltage source, and which may be simplified using series and parallel component
combinations. The rules and techniques explored for strictly series networks are still applicable to series 
connected subsections of larger circuits. The same is true for the rules and techniques established for strictly 
parallel circuits regarding parallel subsections. Thus, the key to analyzing series-parallel circuits is in 
recognizing those portions of the circuit that form series or parallel sub-circuits, and then applying the series and
parallel analysis rules to those sections. Ohm's law, KVL and KCL may be used in turn to solve portions of the 
problem until all currents and voltages are found. As individual voltages and currents are determined, this makes
it easier to apply these rules to determine other values. 

It is often useful to determine the effective impedance of individual sections at the outset in order to facilitate 
circuit analysis. Indeed, continuing the process until the entire network is reduced to a series-only or parallel-
only simplified version is a good starting point. That is, each of the complex impedances that make up the 
series-only or parallel-only simplified equivalent is made up from a sub-circuit which in turn potentially is made
up of other sub-circuits, and so on. The art of examining a complex series-parallel network and being able to 
immediately determine which elements constitute a series connection and which constitute a parallel connection 
is an essential skill and worthy of practice.
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4.2 The Series-Parallel Connection4.2 The Series-Parallel Connection

Consider the circuit of Figure 4.1. This circuit is neither just a series circuit nor just 
a parallel circuit. If it was a series circuit then the current through all components 
would have to be same, that is, there would no nodes where the current could divide.
This is clearly not the case as the current flowing through the capacitor can divide at 
node b, with one portion flowing down through the resistor and the remainder 
through the inductor. On the other hand, if it was strictly parallel, then all of the 
components would have to exhibit the same voltage and therefore there would be 
only two connection points in the circuit. This is also not the case as there are three 
such points: a, b and ground.

What is true for the circuit of Figure 4.1 is that the resistor and the inductor are in 
parallel. We know this because both components are attached to the same two nodes;
b and ground, and must exhibit the same voltage, vb. As such, we can find the 
equivalent impedance of this pair and treat the result as a single value, let's call it ZP. 
In this newly simplified circuit, ZP is in series with the capacitor and the source. We 
have simplified the original circuit into a series circuit and thus the series circuit 
analysis rules may be applied. 

4.3 Series-Parallel Impedance4.3 Series-Parallel Impedance

The rules for combining resistors, capacitors and inductors in AC series-parallel 
circuits are similar to those established for combining resistors in DC circuits. 
Obviously, the first item is to determine the reactances of the capacitors and 
inductors. At that point, simple series and parallel combinations can be identified. 
These combinations are each reduced to a complex impedance. Once this is 
completed, the network is examined again to see if these new complex impedances 
can be identified as parts of new series or parallel sub-circuits, and simplified. This 
process is repeated until we are left with a single complex impedance. Again, it is 
useful to remember that the phase angles of the reactive components can sometimes 
lead to surprising results, such as a series sub-circuit having an impedance 
magnitude smaller than its largest component — something that would never happen
with a network comprised of just resistors. The importance of using vector 
computations cannot be over stressed. 
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Let's begin with a relatively simple series-parallel RLC network where the reactance 
values have already been found.

Example 4.1

Determine the equivalent impedance of the network shown in Figure 4.2.

Looking in from the left side, we note that the inductor and 33 kΩ resistor
are in parallel as they are both tied to the same two nodes. Also, we can
see that the capacitor is in series with the 8.2 kΩ resistor. This series
combination is, in turn, in parallel with the other two parallel components.
Thus, it would make sense to find the series combination first.

Z series = R+(− jX C )

Z series = 8.2 kΩ− j 2k Ω

Z series = 8440 −13.7° Ω

We now place this new complex impedance in parallel with the inductor and
the 33 kΩ resistor.

Z total =
1

1
Z 1

+
1
Z 2

+
1
Z 3

Z total =
1

1
j 550Ω

+
1

33 kΩ
+

1
8440−13.7°Ω

 
Z total = 556.8 85.4°Ω

Clearly, the inductor dominates here. The parallel resistor is roughly two 
orders of magnitude larger than the inductive reactance and has minimal 
impact on a parallel combination. Further, the complex impedance derived 
from the capacitor/resistor combination is also considerably larger, and 
given that it has a negative (capacitive) phase angle, it partly cancels the 
inductive reactance. This leaves us with a magnitude a little higher than that 
of the inductive reactance alone, and with a phase angle shifted toward the 
resistive side.  

The series and parallel combinations can be much more complicated than that of the 
prior network. Ladder networks, for example, feature a set of sections that load other
sections, resulting in repeated series and then parallel simplifications. In this 
situation, it is best to start work at the end farthest from the nodes of interest. The 
following example will illustrate this on a modest scale.
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Example 4.2

Determine the equivalent impedance of the network shown in Figure 4.3.

Looking in from the right side, we see immediately the 750 Ω resistor. This 
is in series with the sub-circuit comprised of the remaining five components.
This sub-circuit can be seen as the −j800 Ω capacitor in parallel with another
sub-circuit containing the other four components. This four component sub-
circuit consists of the inductor in series with yet another sub-circuit 
consisting of the final two resistors and capacitor. This three element sub-
circuit consists of the 2.2 k Ω resistor in parallel with the series combination 
of the 1 k Ω resistor and the −j400 Ω capacitor. 

The most sensible way to approach this is to start at the left end with the 
simple RC series combination and then work right, toward the nodes of 
interest. We'll number the components from left to right for identification.

Z left2 = R1+(− jX C1)

Z left2 = 1k Ω− j 400Ω

Z left2 = 1077 −21.8°Ω

We now place this complex impedance in parallel with the 2.2 kΩ resistor. 
This creates a three element sub-circuit which is in series with the inductor.

Z left3 =
1

1
R2

+
1

Z left2

Z left3 =
1

1
2.2 kΩ

+
1

1077−21.8°Ω
 
Z left3 = 734.7−14.7° Ω

Z left4 = Z left3 + jX L

Z left4 = 734.7 −14.7°Ω +j 600Ω

Z left4 = 822.5 30.2 °Ω
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This group of four is in parallel with the second capacitor of −j800 Ω. 
Finally, we arrive at the equivalent total value by placing the resulting group
of five in series with the 750 Ω resistor.

Z left5 =
1

1
X C2

+
1

Z left4

Z left5 =
1

1
− j 800Ω

+
1

822.5 30.2°Ω
 
Z left5 = 813.4−31.3° Ω

Z total = Z left5 +R3

Z total = 813.4− 31.3°Ω +750Ω

Z total = 1506 −16.3°Ω

In rectangular form this is 1443 −j422.3 Ω, meaning that this network is 
equivalent to a 1443 Ω resistor in series with a capacitive reactance of 
−j422.3 Ω.

 
Series-parallel simplification techniques will not work for all circuits. Some 
networks such as delta or bridge configurations require other techniques that will be 
addressed in later chapters.

4.4 Series-Parallel Analysis4.4 Series-Parallel Analysis

Given the infinite variety of series-parallel configurations, there are myriad ways of 
solving any given circuit for a particular current or voltage. Many solution paths 
exist. This is good, because while you might not see a particular path, there are 
others that will also provide correct results. The only issue is which path is most 
efficient or convenient for you. Suppose we are trying to find vb in the circuit of 
Figure 4.4. How might we approach this problem?
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Figure 4.4
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One path would be to find the total impedance seen by the voltage source, Ztotal. 
Dividing the source voltage by this impedance gives us the source current. We could
then perform a current divider between the capacitor and inductor-resistor branches 
to find the inductor current. Once that current is found, it can be multiplied by the 
inductive reactance to find vb. Alternately, having found the total impedance, we 
could compute the voltage divider between the three components on the right and R1 
to find va. Knowing va, a second voltage divider between XL and R2 gives us vb. A 
third possibility would be to find the source current and use that to find va, perhaps 
by finding the drop across R1 and subtracting that from the source, E. Once va is 
found, a voltage divider can be used to find vb. Undoubtedly there are other solution 
paths that will work here. Some are more “computationally expensive” than others, 
but as long as you can identify one of them, the answers are within reach. 
Remember, the larger the circuit becomes, the greater the number of possible 
solution paths. Don't fall into the trap of relying on the same “trick” for every 
circuit, though. It is useful to solve these circuits using a variety of techniques as a 
means of cross-checking the results and sharpening your skill set.

Example 4.3

Determine vb for the circuit of Figure 4.5 if the source frequency is 100 Hz.

The first thing to do is to find the capacitive reactance.

X C =− j
1

2 π f C

X C =− j
1

2 π100 Hz 75 nF
X C ≈− j 21.22 kΩ

This reactance is in parallel with the 27 kΩ resistor. Their combination is:

Zrc =
R×(− jX C)

R +(− jX C)

Zrc =
27 kΩ×(− j 21.22 kΩ)

27 kΩ − j 21.22 k Ω
Zrc ≈ 16.68E3 −51.8°Ω

This impedance forms a voltage divider with the 27 kΩ resistor to create vb.

vb = e source

Z rc

R+Z rc

vb = 90 0° V 16.68E3− 51.8Ω
47k Ω +16.68E3 −51.8 ° Ω

vb ≈ 25.5 −38.9° V
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A time domain plot of vb and the source voltage is shown in Figure 4.6.

Computer SimulationComputer Simulation

To verify the results of the prior example, the circuit of Figure 4.5 is entered into a 
simulator as shown in Figure 4.7.

A time domain or transient analysis is run, examining vb and the source voltage. 
Node 2 corresponds to vb. The results are shown in Figure 4.8.
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Figure 4.6
Time domain plot of voltages 
for the circuit of Figure 4.5.

Figure 4.7
The circuit of Example 4.3 in 
the simulator.



The plot is delayed one full cycle in order to get past the initial turn-on transient. 
The resulting amplitudes and phase shift line up perfectly with the plot of theoretical
values in Figure 4.6.

Example 4.4

For the circuit of Figure 4.5, determine vab.

This circuit can be analyzed as a pair of voltage dividers. By
definition, vab = va − vb. Numbering the resistors from top to bottom
gives us:

v a = esource

R2

R1+R2

v a = 100 0° V 40 k Ω
10k Ω +10 kΩ

v a = 80 0° V
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Figure 4.8
Transient analysis of the circuit
of Example 4.3.

Figure 4.9
Circuit for Example 4.4.



vb = e source

− j X C

− jX C +jX L

vb = 100 0° V
− j 800Ω

− j 800Ω + j 1 kΩ
vb = 400 180° V

This may also be written as −4000°. Now we subtract the two voltages to 
find vab.

v ab = va −vb

v ab = 80 0° V −400 180° V
v ab = 480 0° V

Note that vab is nearly five times larger than the source voltage. This is 
mostly due to the fact that vb itself is four times the source magnitude. Due 
to the fact that XL and XC are relatively close in size, they largely cancel each
other when placed in series. This produces a small net reactance which 
creates a large current. This considerable current then produces large 
voltages across these components. The closer the magnitudes of XL and XC, 
the higher the L and C component voltages. We will examine this effect in 
detail when we discuss resonance in Chapter 8.

To verify this result, we can calculate the voltage across the inductor and 
check to see if KVL is satisfied.

vinductor = esource

j X L

− jX C+ jX L

vinductor = 100 0° V j 1k Ω
− j 800Ω+ j 1k Ω

vinductor = 500 0° V

Adding the vb of −4000° volts to vinductor does indeed yield the source 
voltage of 1000° volts. 

This can be seen graphically in Figure 4.10. First, note that the inductor 
voltage is in phase with the source voltage. This is because the LC branch 
appears to be net inductive, producing a current lagging the source voltage 
by 90 degrees. This same current flows through the inductor, meaning its 
voltage leads this current by 90 degrees, and thus the inductor voltage is in 
phase with the source voltage. The lagging current also flows through the 
capacitor which produces a further 90 degree lag for the capacitor voltage 
(i.e., vb) or 180 degrees total. Combining the large inductor voltage with a 
capacitor voltage that is nearly as large but effectively inverted yields the 
smaller source voltage.
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Example 4.5

In the circuit of Figure 4.11, determine the current flowing down through the
inductor. Use the source as the reference (0°).

One possible approach for this is to find the equivalent total impedance that 
the source drives in order to find the source current. A current divider can 
then be used between the inductor and the pair of capacitors (all three being 
in parallel). Another option would be to find the impedance of the three 
reactive components and then use the voltage divider rule to find va. 
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Figure 4.11
Circuit for Example 4.5.



Once va is found, the inductor current can be found using Ohm's law. Each 
of these solution paths requires about as much work as the other so there is 
no clear preference. As we just used the voltage divider rule in the prior 
example, let's use the current divider rule this time.

We are going to need the combined capacitive reactance for the current 
divider, and we will also need it to find the total impedance, so let's do that 
first.

X Ctotal =
1

1
X C1

+
1

X C2

X Ctotal =
1

1
− j 4 kΩ

+
1

− j 8k Ω
 
X Ctotal = 2667−90°Ω

This value is in parallel with the inductive reactance, and that combo is in 
series with the resistor, yielding the total impedance.

Z CL =
1

1
X Ctotal

+
1

X L

ZCL =
1

1
− j 2667Ω

+
1

j 1k Ω
 
ZCL = 1600 90°Ω

Z total = R+Z CL

Z total = 2 kΩ+1600 90°Ω

Z total = 2561 38.7°Ω

The source current is found using Ohm's law.

isource =
esource

Z total

isource =
40 0° V

2561 38.7°Ω
 
isource = 15.6E-3−38.7° A

We now apply a current divider between XCtotal and the inductor.
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i inductor = isource

X Ctotal

X Ctotal+X L

i inductor = 15.6E-3−38.7° A
− j 2667Ω

− j 2667Ω+j 1000Ω
 
i inductor = 24.99E-3−38.7° A

Once again we see a branch current that is larger in magnitude than the 
source current. This current should produce an inductor voltage of

vinductor = iinductor× X L

vinductor = 24.99E-3−38.7 ° A×1000 90 °Ω

vinductor = 24.99 51.3° V

The voltage across the resistor is

v R = i source×R
v R = 15.6E-3−38.7° A×2000 0°Ω

v R = 31.2−38.7° V

KVL indicates that the sum of vR and vinductor should equal the source of 
400° volts, and it does (within rounding limits). 

 
It is now time for some examples that use current sources.

Example 4.6

Determine va, vb and vab in the circuit of Figure 4.12. Use the source as the
reference angle of 0 degrees.

To find vb we can determine the equivalent impedance of the two
resistors and the inductor and multiply it by the source current. The
rightmost resistor and inductor are in series, yielding 10 + j20 Ω. This
is in parallel with the 18 Ω resistor.

Z b =
R1×Z LR

R1 +Z LR

Zb =
18Ω×(10+ j 20 Ω)

18Ω+(10+ j 20 Ω)
Zb = 11.7 27.9°Ω
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Figure 4.12
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vb = isource×Zb

vb = 2 0° A×11.7 27.9°Ω

vb = 23.4 27.9° V

The voltage across the capacitor is vab. We can find this through Ohm's law. 
Given the reference direction of the current source, the capacitor's voltage 
reference polarity is + to − from left to right.

v ab = i source×X C

v ab = 2 0° A×18−90°Ω

v ab = 36−90° V

Finally, va is just vab plus vb based on KVL.

v a = vab+v b

v a = 36−90° V+23.4 27.9° V
v a = 32.48−50.5° V

A phasor diagram is shown in Figure 4.13. Graphically, it can be seen that 
subtracting vb from va yields vab, as expected. Remember, this is a series-
parallel circuit and therefore we do not see necessarily 0 degree or 90 degree
angles between the various voltages as found in simple series-only circuits. 
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Figure 4.13
Phasor voltage plot for the 
circuit of Figure 4.12.



Example 4.7

For the circuit of Figure 4.14, determine vb if the 1 amp source is used as the
reference (0°) and the 3 amp source has a 30° lagging phase angle.

The two current sources are in parallel and can be combined together. We 
must be a little careful regarding polarity, though. First of all, a “30° lagging 
phase angle” means that the second source is 3−30° amps. Along with this,
its reference direction is opposite that of the first source. This means that the
second source is negative or inverted by 180 degrees relative to source one. 
Thus, we can treat it as a downward source of −3−30° amps, or 3150° 
amps, whichever we prefer. Now that they're both configured as having a 
downward reference direction, we simply add them together. 

i total = i1+i2

i total = 1 0° A+3 150° A
i total = 2.192 136.8° A

Alternately, we could subtract 3−30° amps from the first source based on 
the reference directions, and note that the resulting direction of the 
combination is the same as that of the first source. Another option would be 
to reverse the reference direction of the first source. This would yield an 
upward direction with a value of 2.192−43.2° amps.

Having simplified the circuit to a single current source, it should be obvious 
that the inductor is in series with the 22 Ω resistor, and that combination is 
in parallel with both the capacitor and the 33 Ω resistor. Finding that parallel
impedance would allow us to find va. Knowing va, a voltage divider between
the series inductor/resistor combo will yield vb. An important thing to note is
that, given the downward reference direction of the equivalent current 
source, KCL indicates that the current direction through the other 
components must be upward, meaning that both va and vb are negative with 
respect to ground. 
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Figure 4.14
Circuit for Example 4.7.



Z total =
1

1
X C

+
1

R1+X L

+
1
R2

Z total =
1

1
− j 80Ω

+
1

22 Ω+ j 50 Ω
+

1
33Ω

 
Z total = 26.38 6.45°Ω

v a =−i total×Z total

v a =−2.192 136.8° A× 26.38 6.45°Ω

v a = 57.8−36.8° V

If we had reversed the reference direction of the current source, using  
2.192−43.2° amps instead, the leading minus sign would not be required 
and we would arrive at the same result. Continuing,

vb = v a( R1

R1+X L
)

vb = 57.8 −36.8° V
22Ω

22Ω+ j 50Ω
vb = 23.29 −103° V

Analysis Across the Frequency Domain

For the most part, we have examined the response of a circuit to a single frequency 
of excitation. In many electronic systems, such as in the field of communications, 
numerous frequencies are present simultaneously. Recall from Chapter 1 how 
complex wave shapes such as square waves, triangle waves or music signals can be 
built from a series of sine waves. In such systems, the reactive components behave 
as different values to the various frequencies simultaneously. For example, a 
capacitor may have a reactance of −j400 Ω for a 100 Hz signal while at the same 
time offering a reactance of −j40 Ω for a 1 kHz signal. It is this dynamic quality that 
allows us to design circuits to suppress or block certain frequency components, or to 
select specific frequencies from a large range or spectrum of frequency components. 

We shall introduce this concept by first analyzing the circuit at a couple of specific 
frequencies and then employ a simulator to perform a frequency domain analysis 
(sometimes called an AC analysis) to plot complex response curves of voltage versus
frequency. The concept of frequency domain response will be expanded in upcoming
work, particularly in Chapter 10.
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Example 4.8

Consider the circuit shown in Figure 4.15. Assume the source is a one volt 
peak sine wave. Determine voltages va, vb and vc if the source frequency is 
10 kHz. Repeat this for an input frequency of 10 Hz.

If we treat E as the input and vc as the final output, this circuit behaves as a 
series of cascading frequency-dependent voltage dividers. Generally 
speaking, at low frequencies the capacitive reactances will be larger than the
associated resistors, and most of the input voltage will make it to node c. At 
high frequencies, the capacitive reactances will be small resulting in 
considerable voltage division at each node. Thus, only a small percentage of 
the input will make it to the final output. In other words, this circuit will 
filter out or remove high frequencies from the input with considerable effect,
much more so than a single RC network.

First, we need to find the three capacitive reactances at 10 kHz. Starting at 
the left, we find

X C =− j
1

2 π f C

X C =− j
1

2 π10Hz 1μ F
X C ≈− j 15.92Ω

The other capacitive reactances work out to −j31.83 Ω and −j79.58 Ω. The 
voltage va can be determined by a voltage divider between the 1 kΩ resistor 
and the series-parallel combination of the remaining five components. First, 
the 5 kΩ is in series with the 200 nF. That combination is in parallel with the
500 nF, which is in turn in series with the 2 kΩ resistor. Finally, that group 
of four is in parallel with the 1 μF capacitor. 

The resistors and capacitors are numbered from left to right in the equations 
following. We will need each of the segment impedances for subsequent 
calculations.
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Figure 4.15
Circuit for Example 4.8.



Z right3 =
1

1
X C2

+
1

Z right2

Zright3 =
1

1
− j31.83Ω

+
1

5000 − j 79.58Ω
 
Zright3 = 31.83−89.6°Ω

Zright4 = R2+Z right3

Zright4 = 2000Ω +31.83−89.6°Ω

 
Zright4 = 2000−0.91° Ω

Zright5 =
1

1
X C1

+
1

Z right4

Z right5 =
1

1
− j 15.92Ω

+
1

2000−.91°Ω
 
Zright5 = 15.92−89.5°Ω

At last we come to va:

v a = esource

Z right5

R1+Z right5

v a = 1 0° V
15.92−89.5° Ω

1000Ω+15.92−89.5°Ω
 
v a = 15.92−88.6° mV

To find vb we perform a voltage divider between the 2 kΩ resistor and Zright3 
using va as the input.

vb = v a

Z right3

R2+Z right3

vb = 15.92−88.6° mV
31.83−89.6°Ω

2000Ω +31.83−89.6° Ω
 
vb = 253.3−177.3 °μ V
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Finally, to find vc we perform a voltage divider between the 5 kΩ resistor 
and 200 nF capacitor using vb as the input.

v c = vb

X C3

R3+X C3

v c = 253.3−177.3°μ V − j 79.58Ω
5000Ω− j 79.58Ω

 
v c = 4.03 93.6°μ V

Obviously, only a tiny percentage of the source signal is found at node c at 
this frequency. 

Repeating this process at 10 Hz yields capacitive reactances of −j15.92 kΩ, 
−j31.83 kΩ and −j79.58 kΩ. At this level, the amount of signal lost through 
each segment is inconsequential. For example, for the final segment the 
voltage divider ratio works out to:

v c

vb

=
X C3

R3+X C3

vc

vb

=
− j 79.58 k Ω

5000Ω− j 79.58 k Ω

v c

vb

= 0.998−3.6°

In other words, a mere 0.2% of the signal is lost and there is a modest −3.6° 
phase shift. The results at the other nodes are similar and left as an exercise. 
Thus we see that that the low frequencies are allowed through this network 
while the high frequencies are attenuated.

Computer SimulationComputer Simulation

While the results of Example 4.8 should be convincing as to the performance of the 
circuit, it should also be obvious that determining the voltages for any set of source 
frequencies would be a tedious exercise. Fortunately, there are other techniques that 
may be employed, such as those examined in Chapter 10. For now, though, we will 
turn our attention to a simulator. Most simulators offer an AC analysis or frequency 
domain analysis that will create two linked graphs; one for the voltage magnitude 
and another for the phase. We begin by entering the circuit of Figure 4.15 into a 
simulator as shown in Figure 4.16. Even though the schematic shows a 1 kHz source
frequency, the AC analysis will allow us to specify the starting and ending 
frequencies for the plots. In this case, we'll use the 10 Hz and 10 kHz points 
specified in the example. The results are shown in Figure 4.17.
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The top graph plots the voltages at nodes a, b and c across frequency. It is obvious 
that, as the frequency increases, the voltage at each node decreases. The lower graph
plots the phase shift at each of the nodes and it is apparent that the phase shift 
increases in the negative direction as frequency is increased. This is expected 
because, as the frequency increases, the capacitive reactance decreases, making each
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Figure 4.16
The circuit of Figure 4.15 in a 
simulator.

Figure 4.17
Frequency domain plots of 
voltage for the circuit of  
Figure 4.15.



parallel combination appear more capacitive, and approaching −90 degrees each. A 
quick check of the voltage magnitudes and phases at 10 Hz indicates that very little 
signal is lost at the three node and that the phase shifts are close to zero. Further, at 
10 kHz, there is considerable signal loss through each section, with each section 
producing nearly −90 degrees, just as calculated. Perhaps the only curious bit here is
the abrupt change in phase shift shown at node c around 300 Hz (red trace). This is 
just an artifact of the plotting software. If an angle goes beyond ±180 degrees, the 
value is rotated back the other way to keep the value within ±180. For instance, 
−185 degrees is the same as +175 degrees.

Combining reactive elements can be a very effective means of selecting out a certain
range of frequencies, as further illustrated in the following example.

Example 4.9

In Chapter 2 we introduced the concept of a loudspeaker crossover network. 
The idea was to “steer” low frequencies to the woofer (low frequency 
transducer) and high frequencies to the tweeter (high frequency transducer). 
An advancement on that simple system is to use a combination of capacitors 
and inductors in place of a simple RC or RL network. One possible 
configuration is illustrated in Figure 4.18. At high frequencies, the capacitive
reactance will be small while the inductive reactance will be large. Thus, 
virtually all of the input signal will reach the loudspeaker. In contrast, at low
frequencies the capacitive reactances will be large and the inductive 
reactance small, resulting in hardly any of the input signal reaching the 
loudspeaker. Somewhere in the middle, a significant portion of the signal 
will make it through. This point is referred to as the crossover frequency. If 
the source voltage is 1 volt peak, determine the voltage developed across an 
8 Ω loudspeaker at a frequency of 2.6 kHz for this circuit.

First, we need to determine the reactances at the frequency of interest. 

X C1 =− j
1

2π f C

X C1 =− j
1

2π 2.6kHz 5μ F
X C1 ≈− j12.24Ω
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Figure 4.18
Circuit for Example 4.9.



The second capacitor is three times as large and therefore its reactance will 
be one-third as much, or −j4.08 Ω. For the inductor,

X L = j 2π f L
X L = j 2π2.6 kHz 360μ H
X L ≈ j 5.88Ω

Now that we have the reactances, the loudspeaker voltage can be computed 
via a pair of voltage dividers. In order find the loudspeaker voltage we'll first
find the voltage developed across the inductor. To find that, we need to find 
the combined impedance of the three components on the right.

Zright3 =
1

1
X L

+
1

Z right2

Z right3 =
1

1
j 5.88Ω

+
1

8 − j 4.08Ω
 
Zright3 = 6.44 50.3°Ω

Now for the voltage divider to find vinductor.

vinductor = esource

Z right3

Z right3+X C1

vinductor = 1 0° V
6.44 50.3°Ω

6.44 50.3°Ω− j 12.24Ω
 
vinductor = 0.77 110.8° V

And now the final voltage divider to find vloudspeaker.

vloudspeaker = vinductor

Z loudspeaker

Z loudspeaker+X C2

vloudspeaker = 0.77 110.8°μ V 8Ω
8Ω− j 4.08Ω

 
vloudspeaker = 0.686 137.9 ° V

At this particular frequency the loudspeaker sees about 2/3rds of the source 
voltage. For any higher frequency, the loudspeaker will see a larger share of 
the 1 volt source and for any lower frequency, the loudspeaker see less. At 
very low frequencies, only a few microvolts may get through. 
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Computer SimulationComputer Simulation

In order to get a better sense of the loudspeaker voltage as a function of frequency, 
the circuit of Figure 4.18 is captured in a simulator as shown in Figure 4.19.

An AC analysis simulation is performed with the output shown in Figure 4.20.
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Figure 4.19
The circuit of Figure 4.18 in a 
simulator.

Figure 4.20
Frequency domain plot of the 
loudspeaker voltage for the 
circuit of  Figure 4.18.



Both the magnitude and phase plots corroborate the calculated loudspeaker voltage 
at 2.6 kHz. The magnitude plot shows that the loudspeaker voltage is very close to 
the input level at frequencies above about 3 kHz. Below this frequency, the 
loudspeaker voltage rolls off considerably. Down at 100 Hz, well into the bass 
region, less than 100 microvolts, or under 0.01% of the input, reaches the 
loudspeaker. This circuit would make for an effective crossover network to a high 
frequency tweeter.

In closing, it is worth noting that a loudspeaker exhibits a complex impedance 
instead of simple resistive value, however, modeling it as an 8 Ω resistor is sufficient
to illustrate the operation of this circuit. We will take a closer look at the impedance 
of loudspeakers and other devices in upcoming chapters.

4.5 Summary4.5 Summary

In this chapter we have determined how to identify basic series-parallel RLC 

networks driven by a single effective voltage or current source. The key to this is to 
identify sub-circuits or subgroups of components that are comprised of either series-
only or parallel-only configurations within themselves. These groupings can then be 
reduced to equivalent impedances using the series and parallel combination 
techniques examined in prior chapters. This process may be repeated until the entire 
circuit is simplified down to either a single series loop or parallel arrangement of 
components driven by a voltage or current source. 

Once a circuit has been simplified, series and parallel analysis techniques, and laws 
such as Ohm's law, Kirchhoff's voltage and current laws, and the voltage and current
divider rules, may be employed to determine various voltages and currents in the 
simplified equivalent. Given these results, the circuit may be expanded back into its 
original form in stages, reapplying these rules and techniques to determine voltages 
and currents within the sub-circuits. The process may be iterated until every current 
and voltage in the original circuit is discovered, if desired.

As the impedances of the individual sub-circuits can be anywhere between +90 and 
−90 degrees, phasor diagrams of the various component voltages or currents will no 
longer exhibit the strict right angles seen in series-only and parallel-only circuits. 
What is true is that this perpendicular relationship will still exist among the RLC 
components that comprise a specific series or parallel sub-circuit.

There are infinite varieties of series-parallel RLC configurations and consequently no
single solution technique will work for all of them. In fact, the more complex the 
circuit, the more solution paths that exist for said circuit. Consequently it is prudent 
to plan out a solution path instead of just randomly “diving in” as this will lessen the
ultimate effort. 
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Review QuestionsReview Questions

1. In general, describe the process of reducing an AC series-parallel RLC 
network down to a single equivalent impedance.

2. Do Ohm's law, KVL and KCL still apply in AC series-parallel RLC networks?
Why?

3. Is there a finite number of variations of AC series-parallel RLC networks? 
Why/why not?

4. Describe a general procedure to find the voltage between two arbitrary 
points in a series-parallel circuit.

5. In an AC series-parallel RLC circuit, will it always be the case that voltage 
across any resistor is in phase with that resistor's current? Why/why not?

6. In an AC series-parallel RLC circuit, will it always be the case that voltage 
across any inductor leads any resistor's voltage by 90 degrees? Why/why 
not?

4.6 Exercises4.6 Exercises

Analysis Analysis 

Assume the source's angle is 0 degrees unless specified otherwise.

1. Determine the impedance of the circuit of Figure 4.21 at frequencies of      
100 Hz, 10 kHz and 1 MHz.

2. Determine the impedance of the circuit of Figure 4.22 at frequencies of        
20 Hz, 1 kHz and 20 kHz.
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Figure 4.21

Figure 4.22



3. Determine the impedance of the circuit of Figure 4.23 at frequencies of      
300 Hz, 30 kHz and 3 MHz.

4. Determine the impedance of the circuit of Figure 4.24 at frequencies of         
1 kHz, 20 kHz and 1 MHz.

5. Determine the impedance of the circuit of Figure 4.25.

6. Determine the impedance of the circuit of Figure 4.26.
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Figure 4.23

Figure 4.24

Figure 4.25

Figure 4.26



7. For the circuit of Figure 4.27, determine the source current and the current 
through each of the components.

8. For the circuit of Figure 4.27, determine voltages vab and vb.

9. For the circuit of Figure 4.28, determine voltages across R, L and C if the 
source is 7 volts RMS.

10. For the circuit of Figure 4.28, determine the source current and the current 
through each of the three components. Also, draw a phasor diagram of E, vL 
and vR.

11. For the circuit of Figure 4.29, determine the source current and the current 
through each of the components.

12. For the circuit of Figure 4.29, determine voltages vab and vb. Also, draw a 
phasor diagram of E, vab and vb.
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Figure 4.27

Figure 4.28

Figure 4.29



13. For the circuit of Figure 4.30, determine voltages vab and vb if the source is 
20 volts peak.

14. For the circuit of Figure 4.30, determine the source current and the current 
through each of the four components if the source is 20 volts peak. 

15. For the circuit of Figure 4.31, determine the source current and the current 
through each of the four components. 

16. For the circuit of Figure 4.31, determine voltages vab and vb.

17. For the circuit of Figure 4.32, determine voltages vab and vb if the source is 
100 volts peak.

18. For the circuit of Figure 4.32, determine the currents through the two 
resistors. 
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Figure 4.30

Figure 4.31

Figure 4.32



19. For the circuit of Figure 4.33, determine the currents each of the three 
components. 

20. For the circuit of Figure 4.33, determine voltages va and vb.

21. For the circuit of Figure 4.34, determine voltages va and vb.

22. For the circuit of Figure 4.34, determine the middle and right branch 
currents and draw a phasor diagram of three circuit currents.

23. For the circuit of Figure 4.35, determine voltages va and vb.

24. For the circuit of Figure 4.35, determine the currents through the two 
resistors. 
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Figure 4.33

Figure 4.34

Figure 4.35



25. For the circuit of Figure 4.36, determine voltages va and vb. isource = 25 mA.

26. For the circuit of Figure 4.36, determine the currents through the two 
capacitors. 

27. For the circuit of Figure 4.37, determine the current through the capacitor.  
i1 = 10E−30° A and i2 = 3E−390° A.

28. For the circuit of Figure 4.37, determine voltages va and vb.                         
I1 = 10E−30° A and  I2 = 3E−390° A.

29. For the circuit of Figure 4.38, determine voltages va and vb. i1 = 245° A and
i2 = 0.50° A.

30. For the circuit of Figure 4.38, determine the currents through the two 
resistors. i1 = 245° A and i2 = 0.50° A.
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Figure 4.36

Figure 4.37

Figure 4.38



31. For the bridge circuit of Figure 4.39, determine vab. The source is 50 volts 
peak.

32. For the bridge circuit of Figure 4.40, determine vab. The source is 6 amps 
peak.

DesignDesign

33. Determine a new value for the capacitor in Figure 4.27 such that vb is          
1.5 volts.

34. Determine the required inductive reactance in Figure 4.28 to shift the 
capacitor voltage to half of the source voltage.

35. Determine a new value for the 20 nF capacitor in Figure 4.29 such that the 
resistor current is 2 mA.
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Figure 4.39

Figure 4.40



36. In the circuit of Figure 4.41, determine a value for L such that the magnitude
of vb equals va/2 if the source frequency is 10 kHz, R = 2.7 kΩ and              
C = 10 nF.

37. Given the circuit of Figure 4.41, determine a value for C such that the 
source current is in phase with the source voltage. The source frequency is   
1 kHz, R = 68 Ω and L = 22 mH.

38. Given the circuit of Figure 4.42, determine a value for L such that vb is         
1 volt. The source is a 6 volt peak sine at 50 kHz, R1 = 510 Ω and                
R2 = 220 Ω.

39. Given the circuit of Figure 4.39, determine a new value for the inductor such
that the magnitude of vb equals the magnitude of va. Assume that the source 
frequency is 20 kHz.
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ChallengeChallenge

40. Consider the circuit drawn in Figure 4.43. Using only the available 
components of 1 kΩ, 2.2 kΩ, 1 mH, 5 mH, 10 nF, 75 nF and 560 nF, is it 
possible to configure a circuit such that va is half the magnitude of vb for a 
source frequency of 1 kHz? If so, indicate which values could be used for 
the four components. If not, explain your reasoning.

41. Given the circuit of Figure 4.29, determine the frequency at which vb is half 
of the source voltage.

42. For the circuit of Figure 4.44, determine voltages va, vb , and vc. i1 = 50° A 
and i2 = 390° A.

43. Given the circuit of Figure 4.39, is it possible to change the values of the 
two resistors such that the phase angle of va is the same as that of vb? If so, 
what are the new values, and if not, explain why it is not possible. 
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SimulationSimulation

44. Perform a transient analysis to verify the node voltages computed for 
problem 8.

45. Perform a transient analysis to verify the node voltages computed for 
problem 12.

46. Perform a transient analysis to verify the node voltages computed for 
problem 20.

47. Perform a transient analysis to verify the node voltages computed for 
problem 21.

48. Consider the circuit of problem 17. Assuming the source frequency is         
10 kHz, determine values for the capacitors and inductors. Then, use a 
transient analysis to verify the results of problem 17.

49. Perform a transient analysis on the result of problem 33 to verify the 
accuracy of the design.

50. Perform a transient analysis on the result of problem 34 to verify the 
accuracy of the design.

51. Use an AC frequency response simulation to verify the results of       
problem 41.

52. The concept of a loudspeaker crossover network was presented originally in 
Chapter 2,  Series RLC Circuits. In this chapter, we noted that by adding 
more components, it is possible to increase the rate of attenuation. In doing 
so the undesired signals are further reduced in amplitude. The circuits of 
Figure 4.45 and 4.46 (following page) show improved crossovers for a 
woofer and tweeter, respectively. Assuming standard 8 Ω loudspeakers, use 
an AC frequency domain simulation to determine the crossover frequency of
each network. Also, compare the curves at node a to those at node b. Finally,
compare the attenuation slopes to those generated by the simpler crossover 
network presented at the end of Chapter 2. Component values for the 
woofer:  L1 = 760 μH, L2 = 250 μH, C = 10.6 μF. Component values for the 
tweeter: C1 = 5.3 μF, C2 = 16 μF, L = 380 μH.
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Figure 4.45

Figure 4.46



5 5 Analysis Theorems and TechniquesAnalysis Theorems and Techniques

5.0 Chapter Learning Objectives5.0 Chapter Learning Objectives

After completing this chapter, you should be able to: 

• Find the voltage source equivalent of a current source and vice versa.
• Compute voltages and currents in multi-source RLC networks using superposition.
• Simplify RLC networks using Thévenin's and Norton's theorems.
• Determine conditions for maximum power transfer and compute the maximum power.
• Utilize delta-Y and Y-delta conversions for circuit simplification.

5.1 Introduction5.1 Introduction

In this chapter we shall examine a number of theorems and techniques to help us analyze complex circuits and 
address specialized applications. We will begin by examining the concept of source impedance in order to make 
more accurate models of our idealized constant voltage and current sources. This will be a step beyond using a 
simple resistance as found in the DC case. From there we will investigate how to convert from one type of 
source to another, such as creating a voltage source that is the functional equivalent of a current source. A 
functional equivalent is a source that can be swapped out for another while leaving all of the other circuit 
currents and voltages intact. In other words, all of the circuit's component voltage drops and branch currents will
be identical to those found in the original configuration. This technique is useful in a number of ways, 
particularly in that it can help reduce more complex circuits to simplify analysis. 

The concept of equivalence can be extended beyond just a single source to an entire network. For this we will 
examine Thévenin's and Norton's theorems. Using these theorems, entire circuits utilizing dozens of components
can be modeled as a single source with an associated complex impedance. When coupled with the maximum 
power transfer theorem, these tools will allow us to determine component values that produce the maximum 
amount of load power. 

We will also address a method of analyzing circuits that contain multiple current and/or voltage sources that are 
connected in a non-trivial fashion (i.e., not just series voltage sources or parallel current sources). This is called 
the superposition theorem and it can be applied to any circuit or parameter that meets certain requirements, 
including circuits that have a mix of current sources and voltage sources. Superposition can also be used to 
determine voltages and currents when sources use different frequencies. In fact, one of way of imagining a 
complex waveshape is to treat it as a series of connected sources, each with a unique frequency, phase and 
amplitude. Superposition we give us a means to handle this new situation.
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Finally, we will examine how to find equivalent circuits for certain component 
arrangements that use three connecting points, in other words, RLC combinations 
shaped like a triangle or like the letter Y. These are known as delta and Y 
configurations. These configurations are difficult to address with basic series-
parallel simplification techniques. Converting from one configuration to the other 
will help solve that issue.

5.2 Source Conversions5.2 Source Conversions

In DC analysis, we noted that real world sources have practical limits: voltage 
sources cannot produce infinite current and current sources cannot produce infinite 
voltage. A simple way of creating a more accurate model for independent sources is 
to include an internal resistance. For DC voltage sources, a resistance is added in 
series with the source, and for DC current sources a resistance is added in parallel 
with the source. While this works well enough for typical DC sources, the AC 
situation is a little more complicated.

Models for AC SourcesModels for AC Sources

Just as we added a simple resistance to the DC sources to make improved models, 
we can add a complex impedance to AC sources to do likewise. Once again, it is 
possible to make even more involved models that will be more accurate, but for 
most work, this addition will suffice. Generally, there are wider variations in values 
for the AC case than the DC case.

We can think of AC sources as belonging in one of two broad categories. First, there 
are power generators, that is, systems designed to generate and deliver power for 
other electrical devices. This would include the AC mains system in a residence or a 
portable power generator. At the other end of the spectrum are signal sources such as
transducers and sensors. These devices are generally low power and are not designed
to produce particularly high currents, quite the opposite of generators.

The model for an AC voltage source adds an impedance in series, as shown in
Figure 5.1. This impedance sets an upper limit on the source's current output. Even
if the output terminals are shorted, the maximum current will be dictated via Ohm's
law to be the source voltage divided by the internal impedance, or E/Zinternal.
Obviously, this internal impedance will create some voltage divider effect with the
attached load. To minimize this effect, the impedance should be as small as
practicably possible. Thus,

The ideal internal impedance of a voltage source is zero ohms (a short). 

It is not always possible to get close to this ideal. In fact, in some situations the AC

source is far removed from the ideal. 
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Figure 5.1
Practical AC voltage source 
model.



Consider the signal source shown in Figure 5.2. This is a pickup for an electric bass 
guitar. This device is used to translate the motions of guitar strings into a voltage 
that can be fed to an amplifier. It consists of a few thousand turns of very fine 
magnet wire wrapped around a magnet.

When the metal guitar strings vibrate, they alter the surrounding magnetic field. As 
the magnetic field changes, it induces a current, and hence a voltage, in the coil. The 
resulting signal is an electrical analog of the string vibrations. It is, quite literally, an 
AC signal source. But what of its internal impedance? The coil is made of wire 
between AWG 40 and 45, and may be in excess of 1000 feet (300 meters) in length. 
Consulting an AWG table3, we find that this will yield 1000 or more ohms of 
resistance. Of course, a few thousand turns of wire will also create a hefty 
inductance and pickups such as this may exhibit an inductance of a few henries. 
Putting these pieces together, the equivalent internal impedance might look 
something like that shown in Figure 5.3. 

Clearly, values like these are a far cry from the fractional ohm values found in
power generation sources, and they present unique challenges. In the circuit of
Figure 5.3, the component labeled Zin represents the input impedance of the
associated amplifier. Typically, it would be highly resistive but the magnitude can
vary quite a bit depending on the application. A guitar or bass amplifier may exhibit 
1 MΩ or more, while an auxiliary input on a home stereo might be 10 kΩ. What 
happens if you plug a guitar into your hi-fi? Obviously, this system creates a voltage 
divider between the internal impedance of the pickup and the input impedance of the
amplifier, but more importantly, the divider is a function of frequency. At low 
frequencies like 100 Hz, the inductive reactance is small, around j600 Ω, and the 
signal loss to a 10 kΩ input is not that great. On the other hand, at a high frequency 
such as 10 kHz, the inductive reactance will be over j60 kΩ resulting in considerable
signal loss. Thus, the high frequencies are reduced relative to the low frequencies. 
The sonic effect is akin to turning down the treble control — everything will seem 
muffled. If the input impedance is increased considerably, say by a factor of 100, 
then the voltage divider effect at all audible frequencies will be negligible and the 
the instrument will sound true to form. Finally, although this example shows a 
substantial inductance, it is possible for AC sources to have an associated 
capacitance, or even have negligible reactance (i.e., be purely resistive).

3 Such as the one found in Chapter 2 of the companion text, DC Electrical Circuit Analysis,
a companion free OER text by the author.
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Figure 5.2
An electric bass guitar pickup 
(cover removed).

Figure 5.3
Example of internal 
impedance of guitar pickup.



For a current source, the improved model adds an impedance in parallel, as shown
in Figure 5.4. This impedance sets an upper limit on the source's voltage output. If
the output terminals are opened, the maximum voltage will no longer produce a
huge voltage. Instead, it is dictated by Ohm's law to be the source current times
the internal impedance, or I∙Zinternal. This internal impedance will create some
current divider effect with the attached load. To minimize this effect, the internal
impedance should be as large as practicably possible. Thus,

The ideal internal impedance of a current source is infinite ohms. 

From here on, whenever we deal with practical voltage and current sources, we
understand that these sources have some associated internal resistance, even if
they're not shown explicitly in a schematic diagram. Further, whenever we talk about
ideal sources, we simply use a short for the internal impedance of a voltage source 
and an open for the internal impedance of a current source. 

Source EquivalencesSource Equivalences

For any voltage source consisting of an ideal voltage source with a series internal 
impedance, an equivalent current source may be created. Similarly, for any current 
source consisting of an ideal current source with a parallel internal impedance, an 
equivalent voltage source may be created. By “equivalent”, we mean that both 
circuits will produce the same voltage and current to identical loads. Consider the 
simple voltage source on the left side of Figure 5.5. Its equivalent current source is 
shown on the right. 

For reasons that will become apparent under the section on Thévenin's theorem 
following, the internal impedances of these two circuits must be identical if they are 
to behave identically. Knowing that, it is a straightforward process to find the 
required values of the other source. The current/voltage characteristic is linear for 
these circuits, and a straight plot line can be defined by just two points. The two 
obvious points to use are the opened and shorted load cases. In other words, if the 
circuit is equivalent for these two situations, it must work for any load. The shorted 
load case produces a large load current with zero load voltage, and the opened load 
case produces a large load voltage with zero load current. It would not make sense if
the equivalent source could produce a greater current or voltage under the same 
extreme conditions as the original.
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Figure 5.4
Practical AC current source 
model.

Figure 5.5
A simple AC voltage source 
(left) and corresponding 
current source (right).



For example, given a voltage source, the current that can be developed when the 
load is shorted is E/Zinternal. Under that same load condition, all of the current from 
the current source version must be flowing through the load (otherwise the load isn't 
shorted). Therefore, the value of the equivalent current source must be the current of 
E/Zinternal. Note that the resulting source normally will not have the same phase angle 
as the original source due to the phase angle of the associated impedance. 

To continue, if we look at the open load case for the voltage source, the load current 
would be zero and the load voltage would be the entire source voltage of E. For the 
current source, the load would also see no current and its voltage would be the 
voltage appearing across its internal resistance which is Zinternal times the current 
E/Zinternal, or just E. Thus, the two behave identically at the load limits. 

Similarly, if we start with a current source, an open load produces a load voltage of 
I∙Zinternal. Therefore, the equivalent voltage source must have a value of I∙Zinternal. For 
the current source, a shorted load would produce a load current equal to the source 
value, or I. The voltage source version would produce a current of E/Zinternal, where 
the value of E was just found to be equal to I∙Zinternal, and thus the load current would 
be I∙Zinternal/Zinternal, or just I. Once again, the two versions behave identically at the 
load limits. 

Changing the source frequency results in different values for both the reactance and 
the converted source voltage or current, thus the equivalent is valid only for the 
frequency in question.

To summarize the process of source conversion:

• The internal impedance will be the same for both versions.
• If converting from a voltage source to a current source, the value of the 

current source will be the short circuit current available from the voltage 
source (i.e., shorted load case), and is equal to E/Zinternal.

• If converting from a current source to a voltage source, the value of the 
voltage source will be the open circuit voltage available from the current 
source (i.e., opened load case), and is equal to I∙Zinternal.

• The equivalent is unique to the frequency of the source. 

If a multi-source is being converted (i.e., voltage sources in series or current sources 
in parallel), first combine the sources to arrive at the simplest source and then do the 
conversion. Do not convert the sources first and then try to combine them as you 
will wind up with series-parallel configurations rather than simple sources. 

Judicious use of source conversions can sometimes simplify multi-source circuits by
allowing converted sources to be combined, resulting in a single source. 
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Example 5.1

Convert the source of Figure 5.6 into its current source equivalent.            
E = 2 0° volts RMS.

First, the existing impedance of 80 − j60 Ω does not change, it is simply 
moved to a parallel position. To find the value of the current source, 
compute the short circuit current the existing source is capable of  
producing.

I =
E
Z

I =
2 0° V

80 − j 60Ω
I = 0.02 36.9° A

The result is shown in Figure 5.7. The current source is 20 mA RMS with a 
leading phase angle of 36.9 degrees.

Example 5.2

Convert the source of Figure 5.8 into its voltage source equivalent.             
I = 0.10° amps peak.

Again, the internal impedance of 100 + j20 Ω does not change and we 
simply place it in series. To find the value of the voltage source, find the 
open circuit voltage the existing source is capable of producing.

E = I×Z
E = 0.1 0° A×(100 + j 20Ω)
E ≈ 10.2 11.3° V

The equivalent is shown in Figure 5.9. The voltage source E is 10.2 volts 
peak with a leading phase angle of 11.3 degrees. 
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Figure 5.6
Circuit for Example 5.1.

Figure 5.7
Current source equivalent of 
the source of Figure 5.6.

Figure 5.8
Circuit for Example 5.2.



Computer SimulationComputer Simulation

To verify this process, the circuits of Figures 5.8 and 5.9 are entered into a simulator.
The original circuit simply specified an inductive reactance so a convenient 
frequency of 1 kHz was used and then an appropriate inductor was created that 
would yield the desired reactance of j20 Ω. This turned out to 3.183 mH. Further, a 
random load resistor (200 Ω) was picked and applied to both circuits. The result is 
shown in Figure 5.10.

If these two circuits are equivalent, then the voltages seen across the 200 Ω load 
resistors should be identical. These voltages correspond to node voltages 12 and 8. A
quick voltage divider computation shows that the load voltage should be 
approximately 6.7857.5° volts peak. 

A transient analysis is performed, plotting the load voltages. The results are shown 
in Figure 5.11. The plot itself is delayed by one millisecond in order to get past the 
initial turn-on transient. Further, the current source circuit is shifted by 
approximately 2 microseconds. Without this slight shift in time, the two voltages 
perfectly overlap so that it appears there is only one trace. By looking carefully at 
the graph it can be seen that there are indeed two traces. The amplitudes of these 
waveforms match each other perfectly and also match the computed result. 
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Figure 5.9
Voltage source equivalent of the
source of Figure 5.8.

Figure 5.10
The circuits of Figures 5.8 and 
5.9 in a simulator.



Now let's turn our attention to using source conversion to simplify and solve a multi-
source circuit.

Example 5.3

For the circuit of Figure 5.12, determine vb. I = 2E−390° amps peak and 
E = 100° volts peak.

One method of solution is to transform the voltage source into a current 
source. By doing so, the entire circuit is reduced to a parallel network. The 
two current sources can then be summed and the remaining three 
components can be combined into one equivalent parallel impedance. At that
point Ohm's law can be used to find vb. 
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Figure 5.11
Simulation results for the 
source conversion.

Figure 5.12
Circuit for Example 5.3.



The value of the current source is:

I c =
E
Z

I c =
10 0° V

27 k Ω
I c = 0.3704E-3 0° A

The converted circuit is shown in Figure 5.13 (in blue). 

Combining the two current sources and using an upward reference direction 
yields:

I total = Ic−I
I total = 0.3704E-3 0° A−2E-3 90° A
I total = 2.034E-3 − 79.5° A

The combined impedance is:

Z total =
1

1
X C

+
1
R1

+
1
R2

Z total =
1

1
− j 10 kΩ

+
1

27k Ω
+

1
5.6k Ω

 
Z total = 4208−24.9 ° Ω

And finally we compute vb:

vb = I total×Z total

vb = 2.034E-3 −79.5° A×4208−24.9°Ω

vb = 8.56 −104.4 ° V

We can perform a KCL crosscheck at node b to verify the results in the 
original circuit. Given the reference directions, all currents are flowing out 
of the node except for the current supplied by the voltage source.
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Figure 5.13
Circuit of Figure 5.12 with 
converted source.



iEsource =
E−vb

R1

iEsource =
10 0° V−8.56−104.4 ° V

27 kΩ
iEsource = 0.544E-3 34.4° A

The remaining three currents should add up to this value.

icapacitor =
v b

X C

icapacitor =
8.56−104.4 ° V

− j 10 kΩ
icapacitor = 0.856E-3−14.4° A

iR2 =
vb

R2

iR2 =
8.56−104.4 ° V

5.6k Ω
iR2 = 1.53E-3−104.4° A

Finally, 0.856E−3−14.4° + 1.53E−3−104.4° + 2E−390° amps does 
indeed equal 0.544E−334.4° amps, within carried rounding error.

5.3 Superposition Theorem5.3 Superposition Theorem

Superposition allows the analysis of multi-source AC series-parallel circuits. 
Superposition can only be applied to networks that are linear and bilateral. 
Fortunately, all of components we have discussed; resistors, capacitors and 
inductors, fall into that category. Further, superposition cannot be used to find values
for non-linear functions, such as power, directly. This is not a limitation though 
because power can be computed from the resulting voltage or current values. 

The basic idea is to determine the contribution of each source by itself, and then 
combine the results to get the final answer. The contributions are either all voltages 
or all currents, depending on need. We can state the superposition theorem as:

Any voltage or current in a multi-source linear bilateral network may be 
determined by summing the contributions caused by each source acting 
alone, with all other source replaced by their internal impedance.

The process generates a series of new single-source circuits, one for each source. 
These new circuits are then analyzed for the parameter(s) of interest. 
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Consider the circuit depicted in Figure 5.14.

Here we see two voltage sources, E1 and E2, driving a three element series-parallel 
network. As there are two sources, two derived circuits must be created; one using 
only E1 and the other using only E2. When considering a given source, all other 
sources are replaced by their ideal internal impedance: for a voltage source, that's a 
short; and for a current source, an open. We start by considering E1. In the new 
circuit E2 is replaced with a short. This leaves a fairly simple network where XC and 
XL are in parallel. This combination is in series with R and E1. Using basic series-
parallel techniques, we can solve for desired quantities such as the current flowing 
through R or the voltage vb. It is important to indicate the reference current direction 
and voltage polarity with respect to the source being considered (here, that's left-to-
right and positive, respectively). The process is then repeated for E2, shorting E1 
and leaving us with R in parallel with XC, which is in turn in series with XL and E2. 
Note that although in this version Vb is still positive, the reference current direction 
for R is now right-to-left. The numerical results from this version are added to those 
of the E1 version (minding polarities and directions) to achieve the final result. If 
power is needed, it can be computed from these currents or voltages. Note that 
superposition can work with a mix of current sources and voltage sources. The 
practical downside is that for large circuits using many sources, numerous derived 
circuits will need to be analyzed. For example, if there are three voltage sources and 
two current sources, then a total of five derived circuits will be created.

It is also possible to use superposition to find the resulting currents or voltages in a 
circuit that uses sources with different frequencies. In this instance, the equivalent 
circuits will have different reactance values. In fact, a single non-sinusoidal source 
can be analyzed using this method by treating the source as a series of superimposed
sine waves with each sine source producing a new circuit with its own unique 
reactance values.

To summarize the superposition technique:

• For every voltage or current source in the original circuit, create a new sub-
circuit. The sub-circuits will be identical to the original except that all 
sources other than the one under consideration will be replaced by their 
ideal internal impedance. This means that all remaining voltage sources will 
be shorted and all remaining current sources will be opened.
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Figure 5.14
A basic multi-source circuit.



• Indicate the reference current directions and voltage polarities on each of the
new sub-circuits, as generated by the source under consideration.

• Solve each of the sub-circuits for the desired voltages and/or currents using 
standard series-parallel analysis techniques. Make sure to note the reference 
voltage polarities and current directions for these items.

• Add all of the contributions from each of the sub-circuits to arrive at the 
final values, being sure to account for current directions and voltage 
polarities in the process.

To illustrate the superposition technique, let's reexamine the dual source circuit 
shown in Figure 5.12 (repeated in Figure 5.15 for ease of reference). We will solve 
this using superposition and compare the results to those of  Example 5.3 which used
source conversion.

Example 5.4

For the circuit of Figure 5.15, determine vb using superposition. 
I = 2E−390° amps peak and E = 100° volts peak.

As the circuit has two sources, it will require two sub-circuits. For the 
voltage source, the current source will be replaced with an open. For the 
second circuit utilizing the current source, the voltage source will be 
replaced with a short. First, using the voltage source we find:
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Figure 5.15
Circuit for Example 5.4.

Figure 5.16
Circuit of Figure 5.15 
considering voltage source.



For this circuit, vb may be determined via a voltage divider. To proceed, we 
need the impedance of the parallel combo on the right.

Z right2 =
R× jX C

R − jX C

Zright2 =
5.6 kΩ×(− j 10 kΩ)

5.6 kΩ− j 2k Ω
Zright2 = 4886 − 29.2°Ω

Now for the voltage divider to find the contribution of the first source to vb.

vb1 = E
Z right2

Z right2 + R1

vb1 = 10 0° V
4886−29.2°Ω

4886−29.2°Ω +27 k Ω
 
vb1 = 1.558−24.88° V

We turn our attention to the current source's contribution. We short the 
voltage source and redraw:

This is a simple parallel circuit. We can find vb by placing the resistors and 
capacitors in parallel, and then using Ohm's law. Note that the reference 
direction of the current source is downward, meaning that the component 
current is upward, which makes vb negative (i.e., + to − bottom to top). The 
parallel impedance is:

Z total =
1

1
X C

+
1
R1

+
1
R2

Z total =
1

1
− j 10 kΩ

+
1

27k Ω
+

1
5.6k Ω

 
Z total = 4208−24.9 ° Ω
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Figure 5.17
Circuit of Figure 5.17 
considering current source.



We apply Ohm's law to find this source's contribution to vb.

vb2 = I×Z total

vb2 =−2E-3 90° A×4208−24.9°Ω

vb2 = 8.416 −114.9° V

The final result is the sum of the two parts:

vb = v b1 +v b2

vb = 1.558 − 24.88° V +8.416 −114.9 ° V
vb = 8.558 −104.4 ° V

This is virtually the same value obtained using the source conversion 
technique in the prior example.

As mentioned previously, superposition can be used to determine the results even 
when the sources use different frequencies. This will be explored in the next 
example.

Example 5.5

For the circuit of Figure 5.18, determine vb.

Using superposition, we derive two new circuits, each with unique reactance
values. The first circuit is shown in Figure 5.19.
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Figure 5.18
Circuit for Example 5.5.

Figure 5.19
Circuit for Example 5.5,       
first source only.



The reactance values are:

X L = j 2π f L
X L = j 2π1kHz 50 mH
X L ≈ j 314.2Ω

X C =− j
1

2 π f C

X C =− j
1

2 π1kHz 750 nF
X C ≈− j 212.2Ω

A voltage divider can be used to find this portion of vb. The parallel combo 
of the  2 kΩ resistor and capacitor is 211−83.9° Ω.

vb1 = E
Z right2

Z right2 + X L

vb1 = 10 0° V 211−83.9° Ω
211−83.9°Ω +314.2 90 °Ω

 
vb1 = 19.78−161.9 ° V

Remember, this waveform is at a frequency of 1 kHz. We can repeat this 
process for the second source which uses 10 kHz. At this new frequency the 
inductive reactance will be ten times larger, or j3142 Ω, and the capacitive 
reactance will be ten times smaller, or −j21.22 Ω. The new circuit is shown 
in Figure 5.20.

Once again, a voltage divider can be used to find this portion of vb. The 
parallel combo of the 2 kΩ resistor and inductor is 168732.5° Ω.

vb2 = E
Z left2

Z left2 + X C

vb2 = 2 0° V
1687 32.5°Ω

1687 32.5°Ω +21.22−90°Ω
 
vb2 = 2.01 0.6° V
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Figure 5.20
Circuit for Example 5.5,  
second source only.



This contribution is at a frequency of 10 kHz. Thus, the combination is a 
relatively small 10 kHz sine at about 2 volts peak riding on a 1 kHz sine that
is nearly ten times larger in amplitude. This is shown in Figure 5.21.

Computer SimulationComputer Simulation

In order to verify the two-component waveform of Example 5.5, the circuit of  
Figure 5.18 is captured in a simulator as shown in Figure 5.22.
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Figure 5.21
Voltage plot for Example 5.5.

Figure 5.22
Circuit of Example 5.5 in a 
simulator.



A transient analysis is performed. The results are illustrated in Figure 5.23.

The results match the computed values nicely. We can see the small amplitude high 
frequency sine wave effectively following the contour of the much larger 1 kHz sine 
wave.

5.4 Thévenin's and Norton's Theorems5.4 Thévenin's and Norton's Theorems

These theorems are related in that they allow complex linear networks to be 
simplified down to a single source with an associated internal impedance. They 
simplify analysis when checking a circuit with multiple possible loads.

Thévenin's TheoremThévenin's Theorem

Thévenin's theorem is named after Léon Charles Thévenin. It states that:

Any single port linear network can be reduced to a simple voltage source, 
Eth, in series with an internal impedance Zth.
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Figure 5.23
Simulation results for the 
circuit of Example 5.5.

https://en.wikipedia.org/wiki/L%C3%A9on_Charles_Th%C3%A9venin


It is important to note that a Thévenin equivalent is valid only at a particular 
frequency. If the system frequency is changed, the reactance and impedance values 
will change and the resulting Eth and Zth values will be altered. Consequently, these 
equivalents are generally not appropriate for a circuit using multiple sources with 
differing frequencies4. A generic example of a Thévenin equivalent is shown in 
Figure 5.24.

The phrase “single port network” means that the original circuit is cut in such a way 
that only two connections exist to the remainder of the circuit. That remainder may 
be a single component or a large multi-component sub-circuit. Eth is the open circuit 
voltage at the port and Zth is the impedance looking back into the port (i.e., the 
equivalent that now drives the remainder). As there are many ways to cut a typical 
circuit, there are many possible Thévenin equivalents.  Consider the circuit shown in
Figure 5.25.

Suppose we want to find the Thévenin equivalent that drives R2. We cut the circuit 
immediately to the left of R2. That is, The first step is to make the cut, removing the 
remainder of the circuit. In this case the remainder is just R2. We then determine the 
open circuit output voltage at the cut points (i.e., at the open port). This voltage is 
called the Thévenin voltage, Eth. This is shown in Figure 5.26. In a circuit such as 
this, basic series-parallel analysis techniques may be used to find Eth. In this circuit, 
due to the open, no current flows through the inductor, L, and thus no voltage is 
developed across it. Therefore, Eth must equal the voltage developed across the 
capacitor, C.

4 It is possible that an equivalent can be valid across a specified range of frequencies, but it
will not hold for all frequencies.
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Figure 5.24
Generic Thévenin equivalent 
circuit. 

Figure 5.25
Circuit under consideration for 
a Thévenin equivalent.



The second part is finding the Thévenin impedance, Zth. Beginning with the “cut” 
circuit, replace all sources with their ideal internal impedance (thus shorting voltage 
sources and opening current sources). From the perspective of the cut point, look 
back into the circuit and simplify to determine its equivalent impedance. This is 
shown in Figure 5.27. Looking in from where the cut was made (right side), we see 
that R1 and XC are in parallel, and this combination is then in series with XL. Thus, Zth

is equal to jXL + (R1 || −jXC).

As noted earlier, the original circuit could be cut in a number of different ways. We 
might, for example, want to determine the Thévenin equivalent that drives C in the 
original circuit of Figure 5.25. The new port location appears in Figure 5.28.

Clearly, this will result in different values for both Eth and Zth. For example, Zth is 
now R1 || (R2 + jXL). 

A common error is to find Zth from the wrong perspective, namely, finding the 
impedance that the source drives. This is flatly incorrect. Remember, Zth is found by 
looking into the port and simplifying whatever is seen from there. One way to 
remember this is that it is possible to create equivalents for multi-source circuits. In 
that instance, there isn't a single driving source, so finding its load impedance is 
nonsensical. 
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Figure 5.26
Eth,the open circuit output 
voltage.

Figure 5.27
Finding Zth.

Figure 5.28
An alternate port location.



Measuring the Thévenin Equivalent in the LaboratoryMeasuring the Thévenin Equivalent in the Laboratory

In a laboratory situation, the Thévenin equivalent can be found quickly and 
efficiently with the proper tools. First, the circuit is “cut”, leaving just the portion to 
be Thévenized. The voltage at the cut points is measured with an oscilloscope. This 
is Eth. All of the sources are then replaced with their internal impedance, ideally 
shorting voltage sources and opening current sources5. An LCR impedance meter can
then be connected to the port to read Zth. If an impedance meter is not available, then
the source(s) are left in place and an LCR substitution box is placed at the cut points. 
The box is adjusted so that the voltage across it is equal to half of Eth. By the voltage
divider rule, the value of the substitution box must be equal to Zth. In this case, the 
substitution box will yield either an inductance or capacitance value which can then 
be turned into a reactance given the frequency.

Example 5.6

For the circuit of Figure 5.29, determine the Thévenin equivalent that drives 
the 300 Ω resistor and find vc. Assume the source angle is 0°.

First, let's find Eth, the open circuit output voltage. We cut the circuit so that 
the 300 Ω resistor is removed. Then we determine the voltage at the cut 
points. This circuit is shown in Figure 5.30.

5 A typical laboratory signal generator has a 50 Ω internal impedance, and using this value 
would be more accurate than just replacing the source with a shorting wire.
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Figure 5.29
Circuit for Example 5.6.

Figure 5.30
Circuit for finding Eth for 
Example 5.6.



There is no current flowing through the inductor due to the open. Therefore, 
the voltage across the inductor is zero. Consequently, Eth is the voltage 
across the capacitor, and that can be found with a voltage divider.

E th = E
X C

X C +R1

E th = 10 0° V − j 200Ω
− j 200Ω +100Ω

 
E th = 8.944−26.6° V  or 8 − j 4 V

To find Zth, we replace the source with a short and then look back in from the
cut points. The equivalent circuit is shown in Figure 5.31. The inductor is in 
series with the parallel combination of the resistor and capacitor.

Z left2 =
R× jX C

R − jX C

Z left2 =
100Ω×(− j 200Ω)

100Ω− j 200Ω
Z left2 = 89.44− 26.6°Ω

Z th = Z left2 + X L

Z th = 89.44 −26.6 °Ω+ j 50Ω

Z th = 80.62 7.12°Ω  or 80 + j 10Ω

The completed equivalent is shown in Figure 5.32.
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Figure 5.31
Circuit for finding Zth for 
Example 5.6.

Figure 5.32
Completed equivalent for 
Example 5.6.



The voltage across the 300 Ω resistor can be found directly:

v R2 = E th

R2

Z th + R2

v R2 = 8 − j 4 V
300Ω

80+ j 10Ω +300Ω
 
v R2 = 7.06−28.1° V

This value can be verified by following a standard series-parallel 
simplification. For example, the impedance of the three rightmost 
components (181.4−53.97° Ω) forms a voltage divider with the 100 Ω 
resistor and the 10 volt source. This leads to vb (7.156−18.61° volts ). A 
second divider can then be used between vb, the inductor and the 300 Ω 
resistor to find vc, which is 7.06−28.1° volts as expected. The big 
advantage of using the Thévenin equivalent is that we can easily find vc for 
any other value of load because we need only analyze the simpler equivalent
circuit rather than the original.

 
Thévenin's theorem can also be used on multi-source circuits. The technique for 
finding Zth does not change, however, finding Eth is a little more involved, as 
illustrated in the next example.

Example 5.7

Find vb for the circuit of Figure 5.33 using Thévenin's theorem.

This circuit is similar to the one used in Example 5.5 (Figure 5.18). The 
difference here is that the second source uses the same frequency as the first 
source. The reactance values are:

XL = j314.2 Ω
XC = −j212.2 Ω 
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Figure 5.33
Circuit for Example 5.7.



The voltage across the 2 kΩ is vb, so we'll treat that resistor as the load in 
order to define the equivalent circuit. This is redrawn in Figure 5.34.

To find Zth, we short the two sources. We're left with the inductor and 
capacitor in parallel. If this is confusing, remember that we are looking from
node b to ground (the cut points), so they are not in series. That is, if a 
sensing current entered at node b, it could split left and right, indicating 
parallel paths, not a series connection.

Z th =
− jX C× jX L

− jX C +jX L

Z th =
− j 212.2Ω× j 314.2Ω
− j 212.2Ω+ j 314.2Ω

Z th =− j 653.7Ω

We have a few options to find Eth. Superposition could be used, each circuit 
requiring a voltage divider. Alternately, the equivalent is basically a series 
loop as far as finding vb is concerned. Thus, we could find the voltage across
the inductor and subtract that from the left source (assuming a reference 
current direction of clockwise). Finding the inductor voltage requires either 
a voltage divider or finding the current. Neither approach is considerably 
less work than the other, and it's probably a good idea to get in a little more 
practice using superposition, so...

Considering the left source, we short the right source and find vb.

 

vbR = E1

X C

X C +X L

v bR = 10 0° V − j 212.2Ω
− j 212.2Ω + j 314.2Ω

 
vbR = 20.84 180 ° V   or −20.84 0° V

For the right source, we short the left source and find vb. Then we add the 
two contributions to find the final voltage. Note that both sources will 
produce a reference polarity of + to − from top to bottom.
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Figure 5.34
Circuit for finding equivalents 
for Figure 5.33.



vbL = E2

X C

X C + X L

vbL = 2 0° V
j 314.2Ω

− j 212.2Ω+ j 314.2Ω
 
vbL = 6.16 0° V

The sum of the two is −20.840° + 6.160°, or 14.68180° volts. The 
Thévenin equivalent is a source of 14.68180° volts in series with an 
impedance of −j653.7 Ω. 

To find the voltage across the 2 k Ω resistor, we apply it to the equivalent 
circuit and solve.

vb = E th
R

R +Z th

vb = 14.68 180 ° V 2 kΩ
2k Ω +(− j 653.7Ω)

 
vb = 13.95−161.9° V

Computer SimulationComputer Simulation

To verify the results of the preceding example, the circuit of Figure 5.33 is captured 
in a simulator, as shown in Figure 5.35.

Next, a transient analysis is run, plotting the voltage at node 2, which corresponds to
vb in the original circuit. The result is shown in Figure 5.36. The plot is delayed by 
0.1 seconds in order to get past the initial turn-on transient. 
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Figure 5.35
The circuit of Figure 5.33 
captured in a simulator.



Both the amplitude and phase of the simulation waveform match the computed 
results. 

Norton's TheoremNorton's Theorem

Norton's theorem is named after Edward Lawry Norton. It is the current source 
version of Thévenin's theorem. In other words, complex networks can be reduced to 
a single current source with a parallel internal impedance. Formally, Norton's 
theorem states:

Any single port linear network can be reduced to a simple voltage source, 
In, in parallel with an internal impedance Zn.

The process of finding a Norton equivalent is very similar to finding a Thévenin 
equivalent. First, the Norton impedance is the same as the Thévenin impedance. 
Second, instead of finding the open circuit output voltage, the short circuit output 
current is found. This is the Norton current. Due to the equivalence afforded by 
source conversions, if a Thévenin equivalent for a network can be created, then it 
must be possible to create a Norton equivalent. Indeed, if a Thévenin equivalent is 
found, a source conversion can be performed on it to yield the Norton equivalent. 
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Figure 5.36
Simulation results for the 
circuit of Figure 5.33.

https://en.wikipedia.org/wiki/Edward_Lawry_Norton


Example 5.8

Let's reexamine Example 5.6, this time creating a Norton equivalent circuit. 
For convenience, the original circuit of Figure 5.29 is repeated in Figure 
5.37. Once again, the goal will be to determine the equivalent that drives the 
300 Ω resistor and to find vc.

As noted, the Norton impedance, Zn, is the same as Zth. That was 80 + j10 Ω. 
The Norton current, In, is the short-circuit current through the cut points. We 
can think of this as replacing the load resistor with an ammeter. This is the 
same as the current through the inductor. In this situation, the capacitor and 
inductor are in parallel and yield an impedance of j66.67 Ω. Thus, the source
current is:

isource =
E

R +Z LC

i source =
10 0°

100Ω + j 66.67Ω
isource = 83.2E-3 −33.7° A

This splits between the capacitor and inductor. Using the current divider rule
we find:

in = i inductor = I source

X C

X C +X L

in = 83.2− 33.7° A − j 200Ω
− j 200Ω+ j 50Ω

in = 0.1109 −33.7 ° A

A source conversion can be applied to verify this value. The resulting 
voltage source is 8 − j4 volts, precisely the value of the Thévenin equivalent.

 
Ultimately, deciding between using the Thévenin or Norton equivalents is a matter 
of personal taste and convenience. They work equally well.
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Figure 5.37
Circuit for Example 5.8.



5.5 Maximum Power Transfer Theorem5.5 Maximum Power Transfer Theorem

The concept of maximum power transfer in DC resistive circuits was presented in
earlier work. While maximizing load power is not a goal of all circuit designs, it is
a goal of a portion of them and thus worth a closer look. In short, given an AC

voltage source with internal impedance, as seen in Figure 5.38, a useful question to
ask is “What value of load impedance will yield the maximum amount of power in
the load?” In the DC case, it was discovered that the load resistance must equal the
source resistance in order to achieve maximum load power. In the AC case things
appear to be much more complicated by the possible presence of reactances in both
the source and load.

As a refresher of prior study, consider the basic circuit depicted in Figure 5.38 with
source E, source internal resistance Zi and load impedance Z. For the moment, we 
shall ignore the reactive portions and just describe the load power in terms of the 
load's resistive portion, R. To make the job easier, we may normalize the source 
resistance Ri to 1 Ω.  By doing this, R also becomes a normalized value, that is, it no 
longer represents a simple resistance value but rather represents a ratio in 
comparison to Ri. In this way the analysis will work for any set of source values. 
Note that the value of E will equally scale the power in both Ri and R, so a precise 
value is not needed, and thus, we may as well chose 1 volt for convenience. 

The power in the load can be determined by using I2R where I = E / (Ri+R), yielding

P =( E
Ri+R)

2

R

Using our normalized values of 1 volt and 1 Ω,

P =( 1
1+R)

2

R    

After expanding we arrive at:  

P =
R

R2
+2 R+1

(5.1)

We now have an equation that describes the load power in terms of the load 
resistance. Before we go any further, take a look at what this equation tells you, in 
general. It is obvious that maximum power will not occur at the extremes. If R = 0 or
R = ∞ (i.e., shorted or opened load) the load power is zero. The maximizing case 
occurs somewhere in the middle. To find the precise value that produces the 
maximum load power, the proof can be divided into two portions. The first involves 
graphing the function and the second requires differential calculus to solve for a 
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Figure 5.38
Defining maximum power 
transfer.



precise value. We shall proceed with the graphing portion which will lead us to the 
answer. The more rigorous proof of the second portion is detailed in Appendix C. 

The curve of Equation 5.1 is plotted in Figure 5.39. The normalized load resistance 
is set along the horizontal and the normalized power (i.e., for a source of 1 volt) is 
set along the vertical.

An examination of the power curve shows that the peak occurs at R = 1. In other 
words, the load must be equal to the source resistance. Thus, we can say that if no 
reactances are involved, maximum load power occurs when the load resistance 
equals the source resistance. It does not matter if the source is DC or AC.

The graph shown in Figure 5.39 is asymmetric but the concept of resistance ratios is 
key here. This is easier to see if we plot the completed power curve using a 
logarithmic horizontal axis and also scale the vertical axis to 100%, as shown in 
Figure 5.40. The peak is more apparent and the curve is symmetrical in shape rather 
than lopsided. This reinforces the idea that the ratio of the resistances is what 
matters.

171

N
or

m
al

iz
ed

 L
oa

d 
P

ow
er

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Normalized Load Resistance

0 0.5 1 1.5 2 2.5

R/(R2+2R+1)

Figure 5.39
The resistive portion of the 
power equation plotted.



At this point we may turn our attention to the possible presence of reactances in both
the source and load. It turns out that this is not nearly as complicated as it might 
look. The key is that only resistors dissipate power, not inductors or capacitors6. 
Load power is proportional to iload

2, so our immediate goal is to maximize load 
current for any set of source and load resistances. 

We can modify the original power equation by adding a new term, X, which 
represents the net reactance in the circuit. In other words, X is equal to the sum of 
the reactances in the source impedance and load impedance. The power in the load is
still determined by using I2R, however, we must now include the X term when 
computing the current:

I =
E

√((Ri+R)2+X 2)

This leads is to a new load power expression:

P =( E

√((Ri+R)2+X 2))
2

R (5.2)

A cursory look at Equation 5.2 shows that to maximize P, X must be zero. A 
normalized plot of this equation is shown in Figure 5.41 for R = Ri.

6 Power in AC circuits is examined in great detail in Chapter 7.
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A single peak is evident when X is 0. This can be achieved by setting the load
reactance equal in magnitude to the source reactance but with the opposite sign. In
this manner, the reactances will cancel out, leaving a purely resistive circuit with a
minimal value, and thus producing maximal current for that set of resistors. 
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Figure 5.41
The reactive portion of the 
power equation plotted using 
matched resistance.
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Figure 5.42
The load power surface 
showing variations with both 
load resistance and total 
reactance.



Two variables are involved here, so to further clarify the situation, a 3D surface plot 
of normalized power is shown in Figure 5.42. The vertical axis represents the 
percentage of maximum power while the front and side axes are the normalized total
reactance and load resistance, respectively. A single peak is evident here and 
coincides with X = 0 and R = 1. This is more easily seen by viewing the surface
from the back as shown in Figure 5.43. Note that the highest isocontour encircles
the intersection of X = 0 and R = 1 (i.e., Rload = Ri ).

In sum, we have verified that the resistive portions of the source and load impedance
must be identical and that the reactive portions must be of the same magnitude but of
opposite sign. This configuration is also known as the complex conjugate. Finally, 
we can state:

Maximum load power will be achieved when the load impedance is equal to 
the complex conjugate of the internal impedance of the driving source. 

No other value of load impedance will produce a higher load power. We can imagine
two general cases, one with an inductive source impedance and another with a 
capacitive source impedance. These are shown with the proper loads in Figure 5.44.
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Figure 5.43
An alternate view of the load 
power surface.



To achieve maximum load power in these circuits, Rload = Ri and |jXL| = |−jXC|. Note 
that XL and XC do not have to have the same magnitude as Ri.

While using the complex conjugate produces the maximum load power, it does not 
produce the largest possible load current or load voltage. In fact, this condition 
produces a load voltage and a load current that are half of their maximums. Their 
product, however, is at the maximum. Further, efficiency at maximum load power is 
only 50% (i.e., only half of all generated power goes to the load with the other half 
being wasted internally). Values of R greater than Ri will achieve higher efficiency 
but at reduced load power. Sometimes we favor efficiency over maximal load power.

As any linear single port network can be reduced to something like Figure 5.44 by 
using Thévenin's theorem, combining the two theorems allows us to determine 
maximum power conditions for any impedance in a complex circuit. 

Example 5.9

Consider the circuit of Figure 5.45. What is the power generated in the load 
if it is equal to 40 Ω? Further, is that the maximum power that can be 
attained, and if not, what is the maximum load power and what value of load
would be needed?

To find the load power, first find the circulating current, then use power law. 
The total impedance seen by the source is 20 + j10 Ω + 40 Ω, or 60 + j10 Ω.
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Figure 5.44
Configurations for complex 
conjugate loads.

Figure 5.45
Circuit for Example 5.9.



i =
E

Z total

i =
70V

60Ω +j 10Ω
i = 1.151 −9.5° A

As the voltage and current are in phase for a resistor, we can ignore the 
angle for the power calculation.

P load = i2×Rload

P load =(1.151 A)2×40Ω

P load ≈53 W

This is not the maximum load power that can be achieved because this load 
is not the complex conjugate of the source impedance. The required load for 
maximum load power is shown in Figure 5.46.

We shall repeat the process to find the new load power.

i =
E

Z total

i =
70 V
40Ω

i = 1.75 0° A

P load = i2×Rload

P load =(1.75 A)2×20 Ω

P load = 61.25 W

An alternate method notes that the new circuit's total impedance is purely 
resistive and that the source and load resistances are identical. Therefore the 
voltage source must split evenly across them. In this case that's 35 volts 
RMS each.
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Figure 5.46
Circuit of Figure 5.45 with 
proper load configuration.



P load =
v R

2

R load

P load =
(35 V)2

20Ω
P load = 61.25 W

Example 5.10

For the circuit of Figure 5.47, determine the value of Zload that will achieve 
maximum load power and also determine that power. The current source is 
0.10° amps RMS at 50 kHz.

The first job is determine the inductive reactance at 50 kHz. Recalling that 
XL = j2πfL, this works out to j157 Ω. We now need to find the Thévenin 
equivalent. To find Zth we open the current source and look back in from the 
load. We see the 50 Ω resistor in series with the parallel combination of the 
200 Ω resistor and the inductor. The parallel combination is:

Z =
R × jX L

R +jX L

Z =
200Ω×( j 157Ω)

200Ω + j 157Ω
Z = 76.3+j 97.2Ω

Therefore, Zth = 126.3 + j97.2 Ω. The complex conjugate is 126.3 − j97.2 Ω. 
The capacitive reactance formula may be used to determine the appropriate 
capacitance value to achieve −j97.2 Ω.

C =
1

2 π f X C

C =
1

2π50 kHz 97.2Ω
C = 32.8 nF
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Figure 5.47
Circuit for Example 5.10.



The resulting circuit is shown in Figure 5.48.

To find the load power we need to find Eth. The open circuit output voltage is
the potential appearing across the inductor/resistor pair in Figure 5.47. This 
is because there is no current flowing through the 50 Ω resistor, and 
therefore there is no voltage across it. Eth can be found via Ohm's law as we 
already know the impedance of the parallel branch.
 

E th = i×Z
E th = 0.1 0° A×(76.3+ j 97.2Ω)

E th = 12.4 51.9° V

Again, using the complex conjugate, the voltage source splits evenly 
between the resistive components. As the current source was specified as 
RMS, so too will be the equivalent voltage.

P load =
v R

2

Rload

P load =
(6.2 V )2

126.3Ω
P load = 304.4 mW

This represents the maximum load power that can be achieved in this circuit.
Do not forgot, though, that an equal amount of power is dissipated by the 
source. This produces an efficiency of just 50%.

In summation, we can say that maximum load power is achieved when the load 
impedance is equal to the complex conjugate of the internal impedance of the 
circuitry driving the load. Usually, this requires the application of either a Thévenin 
or Norton equivalent. Finally, although maximum power transfer is a desired 
outcome in some situations, it is not desirable in all situations. The reason is one of 
efficiency. At the maximum load power, efficiency is only 50%. In contrast, for load 
impedances that are greater than the source impedance, the load power will 
decrease, however, the efficiency will increase. Increased efficiency is particularly 
important when striving to minimize heat and extend battery life.
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Figure 5.48
Thévenin equivalent of the 
circuit of Figure 5.47 with 
appropriate load.



5.6 Delta-Y (Pi-T) Conversions5.6 Delta-Y (Pi-T) Conversions

Certain component configurations, such as bridged networks, cannot be reduced to a
single impedance using basic series-parallel conversion techniques. One method for 
simplification involves converting sections into more convenient forms. The 
configurations in question are networks with three external connection points. Due 
to the manner in which they drawn, they are referred to as delta networks and Y 
networks7. These configurations are shown in Figure 5.49. Note that the terminal 
designation of the delta version are upside down compared to those of the Y 
configuration.

These networks can be redrawn without angles. In this form they are known as pi 
(also called “π”) networks and T (also called “tee”) networks. These configurations 
are shown in Figure 5.50.

It is possible to convert back and forth between delta and Y networks in many cases. 
That is, for a given delta network, there may exist a Y network such that the 
impedances seen between the X, Y and Z terminals are identical, and vice versa. 
Consequently, one configuration can replace another in order to simplify a larger 
circuit. Unlike the DC version, certain AC networks cannot be converted using the 
following technique (see the final Challenge problem for an investigation of this).
 

7 In some sources the capital Greek letter delta (Δ) is used instead of spelling out “delta” 
and the letter Y is spelled out as “wye”. Thus, you may come across discussion of “Δ-Y ”,
“Δ-wye” or “delta-wye” networks. It's all the same stuff. 

179

Figure 5.49
Delta and Y (Δ-Y) networks.

Figure 5.50
Alternate form: Pi and T
(π-T) networks.



Δ-Y ConversionΔ-Y Conversion

A true equivalent circuit would present the same impedance between any two 
terminals as the original circuit. Consider the circuits of Figure 5.49 for the unloaded
case (i.e., just these networks with nothing else connected to them). The equivalent 
impedances seen between each pair of terminals for the delta and the Y respectively 
are:

ZXY = Za || (Zb+Zc) = Zd + Ze (5.3)
ZXZ = Zb || (Za+Zc) = Zd + Zf (5.4)
ZZY = Zc || (Zb+Za) = Ze + Zf (5.5)

Let's assume that we have the delta network and are looking for the Y network 
equivalent. We start by focusing on the final set of terms for each of the three 
expressions (e.g., ZXY = Zd + Ze). Note that we have three equations with three 
unknowns (Zd, Ze and Zf). Thus, they can be solved using a term elimination process. 
If we subtract Equation 5.5 from Equation 5.3, we can eliminate the second 
impedance (Ze) and arrive at a difference between the first and third unknown 
impedance s (Zd − Zf). This quantity can then be added to Equation 5.4 to eliminate 
the third impedance (Zf), leaving just the first unknown impedance (Zd). 

(Zd + Ze) − (Ze + Zf) = (Zd − Zf) = Za || (Zb+Zc) − Zb || (Za+Zc)
(Zd + Zf) + (Zd − Zf) = 2Zd = 2( Zb || (Za+Zc) + Za || (Zb+Zc) − Zc || (Za+Zb) )

Therefore,

Zd = Zb || (Za+Zc) + Za || (Zb+Zc) − Zc || (Za+Zb) 

which, after simplifying8, is:

Zd =
Z a Zb

Z a+Z b+Zc

(5.6)

Similarly, we can show that

Ze =
Z a Z c

Z a+Z b+Z c

(5.7)

Z f =
Z b Z c

Z a+Z b+Z c

(5.8)

Note that if the magnitudes and angles of three original impedances are identical, the
magnitudes of the Y equivalent impedances will all be one-third of the original  
magnitude, and with the original phase angle. 

8 This process, though not particularly difficult, is somewhat tedious. It is, as they say, “left
as an exercise for the student”.
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Y-Δ ConversionY-Δ Conversion

For the reverse process of converting from Y to delta, start by noting the similarities 
of the expressions for Zd, Ze and Zf (i.e., Equations 5.6 through 5.8). If two of these 
expressions are divided, a single equation for Za, Zb or Zc will result. For example, 
using Equations 5.6 and 5.7:

Z d

Ze

=

Z a Z b

Z a+Zb+Z c

Z a Z c

Z a+Zb+Z c

 
Z d

Ze

=
Z a Zb

Z a Z c

Z d

Z e

=
Z b

Z c

Therefore,

Z b

Z c

=
Z d

Z e

Z b =
Zc Z d

Z e

This process can be repeated for Equations 5.6 and 5.8 to obtain an expression for 
Za. The two expressions for Za and Zb can then be substituted into Equation 5.6 to 
obtain an expression for Zc that utilizes only Zd, Ze and Zf. A similar process is 
followed for Za and Zb resulting in:

Za =
Z d Z e+Z e Z f +Z d Z f

Z f

(5.9)

Zb =
Z d Ze+Z e Z f +Z d Z f

Ze

(5.10)

Zc =
Z d Z e+Z e Z f +Z d Z f

Zd

(5.11)

If the Y network consists of three identical impedances, then the values of the delta 
equivalent will all be three times the original magnitude, the inverse of the situation 
when converting from delta to Y.

In summation, equations 5.6, 5.7 and 5.8 can be used to convert a delta network into 
a Y network, and equations 5.9, 5.10 and 5.11 can be used to convert a Y network 
into a delta network. Examples of how to apply this technique to tame up-to-now 
intractable series-parallel networks follow.
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Example 5.11

Convert the network of Figure 5.51 into its delta configuration equivalent.

Referring back to Figure 5.50, use Equation 5.9 to determine Za.

Za =
Z d Z e+Z e Z f +Z d Z f

Z f

Za =
(50 + j 20Ω)(10Ω)+(10Ω)(40 − j 30Ω)+(50 +j 20Ω)(40 − j30Ω)

(40 − j 30Ω)
Za = 65.6 +j 29.2Ω

Zb and Zc may be determined in similar manner using Equations 5.10 and 
5.11:

Zb = 350 − j80 Ω
Zc = 54.8 − j37.9 Ω

The equivalent is shown in Figure 5.52.
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Figure 5.51
Network for Example 5.11.

Figure 5.52
Equivalent delta network for 
the Y network of Figure 5.51.



Remember, a complex impedance can always be expressed in rectangular form. 
Rectangular form can be expressed directly as a series combination of a resistor and 
either an inductive or capacitive reactance. Even if the original impedances of a 
network are in a parallel form (or even a more complex form), the equivalent can be 
expressed as a series combination.

Example 5.12

Determine va in the circuit of Figure 5.53. Assume the source has a phase 
angle of zero degrees.

This circuit cannot be simplified sufficiently using basic series-parallel 
techniques due to the bridge section. The components between and below 
nodes a and b comprise a delta network, as shown in Figure 5.54. If this 
network is replaced with a Y equivalent, the resulting circuit reduces to a 
simple series-parallel system. 

Before continuing, it would be helpful to determine the impedance of each 
of the parallel sections. For the leftmost pair:

Z left2 =
R× jX L

R +jX L

Z left2 =
10Ω× j 100Ω
10Ω +j 100Ω

Z left2 = 9.9+ j 0.99Ω
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Figure 5.53
Circuit for Example 5.12.

Figure 5.54
Delta network within the  
circuit of Figure 5.53.



In similar manner, the top pair is determined to be 19.8 + j1.98 Ω and the 
rightmost pair is 29.7 + j2.97 Ω. Referring back to Figure 5.50, we can use 
Equation 5.6 to determine Zd. 

Zd =
Z a Z b

Za+Z b+Z c

Zd =
(19.8+j 1.98Ω)×(9.9+ j 0.99Ω)

(19.8+j 1.98Ω)+(9.9+j 0.99Ω)+(29.7+ j 2.97Ω)
 
Zd = 3.3+ j 0.33Ω

Likewise, we can use Equations 5.7 and 5.8 to determine Ze and Zf.

Ze = 9.9 + j0.99 Ω
Zf = 4.95 + j0.495 Ω

Swapping the equivalent Y network into the original circuit leads us to the 
circuit of Figure 5.55 (Y network shown in blue). This circuit can be 
simplified directly to find va.

In this equivalent circuit, va is simply the source voltage of 10° minus the 
voltage across the 2 Ω resistor. The immediate goal, then, is to find the 
current through that resistor. This can be achieved via a current divider once 
the source current is known. To find the source current, we need to find the 
total impedance of the network. On the upper left side, Zd is in series with 
the 2 Ω resistor for a total of 5.3 + j0.33 Ω. This is in parallel with the upper 
right side total of 15.9 + j0.99 Ω. 
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Zupper =
Z upperleft×Z upperright

Z upperleft +Zupperright

Zupper =
(5.3 + j0.33Ω)×(15.9 +j 0.99Ω)

(5.3 +j 0.33Ω) +(15.9 + j 0.99Ω)
Zupper = 3.975 +j 0.2475Ω

This is in series with the lower section of 4.95 + j0.495 Ω for a total of 
8.9564.76° Ω. Using Ohm's law, we find the source current:

isource =
E

Z total

isource =
1 0° V

8.956 4.76° Ω
isource = 0.1117−4.76° A

Now for the current divider and also Ohm's law for the 2 Ω resistor.

i2Ω = isource

Z upperright

Zupperright+Z upperleft

i2Ω = 0.1117−4.76° A 15.9+ j 0.99Ω
(15.9+ j 0.99Ω)+(5.3+j 0.33Ω)

 
i2Ω = 83.7E-3−4.76° A

v 2Ω = i2Ω×R
v 2Ω = 83.7E-3−4.76° A×2Ω

v 2Ω = 0.1675−4.76° V

Finally, we subtract that potential from the source to find va.

v a = E −v 2Ω

v a = 1 0 ° V −0.1675−4.76° V
v a = 0.833 0.95° V

5.7 Summary5.7 Summary

In this chapter we have examined several techniques and theorems to assist with the 
analysis of AC electrical circuits. We began with more practical models for voltage 
and current sources by adding an internal impedance to set limits on the source's 
maximum output and make it sensitive to output frequency. For a voltage source, 
this impedance is in series, its ideal value being a short, just as it was for the DC 
case. For current sources, the impedance is in parallel, its ideal value being an open. 
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Source conversions allow us to create an equivalent voltage source for any practical 
current source and vice versa. An equivalent source is one that will create the same 
voltage across (and current into) the remaining circuit as did the original source. In 
some cases, this swap allows multiple sources to be combined into a single source, 
simplifying analysis. If the associated impedance does not have a zero degree phase 
angle, then the converted source will not be in phase with the original, but will 
instead be shifted by the impedance angle.

The superposition theorem states that, for any multi-source linear bilateral network, 
the contributions of each source may be determined independent of all other sources,
the final result being the summation of the contributions. This remains true in the AC

case, however, care must be taken regarding phase shifts when combining the 
various contributions. The original circuit of N sources generates N new circuits, one
for each source under consideration and with all other sources replaced by their ideal
internal impedance.

Thévenin's and Norton's theorems allow the simplification of complex linear single 
port (i.e., two connecting points) networks. The AC Thévenin equivalent consists of 
a voltage source with a series impedance while the AC Norton equivalent consists of 
a current source with a parallel impedance. These impedances can be represented in 
general as a resistance in series with a reactance, and given an operating frequency, 
the reactance can be turned into a capacitance or inductance. These equivalents, 
when replacing the original sub-circuit, will create the same voltage across the 
remainder of the circuit with the same current draw. In other words, the remainder of
the circuit will see no difference between being driven by the original sub-circuit or 
by either the Thévenin or Norton equivalents.

The maximum power transfer theorem states that for a simple voltage source with an
internal impedance driving a simple load, the maximum load power will be achieved
when the load impedance equals the complex conjugate of the internal impedance. 
The complex conjugate has the same real or resistive value, however, the reactive 
portion is of the opposite sign. This results in a cancellation of the reactive 
components, leaving just the resistive portions and maximizing load current. At this 
point, efficiency will be 50%. If the load impedance is higher than the internal 
impedance, the load power will not be as great, however, the system efficiency may 
improve, depending on the phase angle.

Delta-Y conversions allow the generation of equivalent “three connection point” 
impedance networks. RLC networks with three elements in the shape of a triangle or 
delta (with one connection point at each corner) may be converted into a three 
element network in the shape of a Y or T, or vice versa. The two versions will 
behave identically to the remainder of the circuit. This allows the simplification of 
some circuits and eases analysis.
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Review QuestionsReview Questions

1. What are the ideal internal impedances of AC voltage and current sources?
2. Outline the process of converting an AC voltage source into an AC current 

source, and vice versa.
3. In general, describe the process of using superposition to analyze a multi-

source circuit.
4. What do Thévenin's and Norton's theorems state? How are they related?
5. What are the conditions to achieve maximum power transfer for AC circuits?

How does this differ from the DC version?
6. What are delta and Y configurations? How are they related?

5.8 Exercises5.8 Exercises

AnalysisAnalysis

1. For the circuit shown in Figure 5.56, use superposition to find vb.

2. For the circuit shown in Figure 5.56, use superposition to find the current 
through the capacitor.

3. Use superposition to find the current through the 82 Ω resistor. For the 
circuit shown in Figure 5.57. 

4. Use superposition to find vb and vcd for the circuit shown in Figure 5.57. 
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5. In the circuit of Figure 5.58, use superposition to find vb. Source one is one 
volt peak and source two is two volts peak.

6. In the circuit of Figure 5.58, use superposition to find the currents through 
the two inductors. Source one is two volts peak and source two is three volts
peak.

7. Use superposition to find the current through the 2.2 kΩ resistor for the 
circuit of Figure 5.59. E1 = 10° and E2 = 1090°.

8. Use superposition to find vab for In the circuit of Figure 5.59. E1 = 10° and
E2 = 245°.

9. In the circuit of Figure 5.60, use superposition to find vb and vcd. The sources
are in phase.
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10. In the circuit of Figure 5.60, use superposition to find the current through 
the capacitor. The sources are in phase.

11. Use superposition to find the two source currents for In the circuit of   
Figure 5.61. Source one is 100 mV peak and source two is 500 mV peak (in 
phase).

12. Use superposition to find vcd for the circuit of Figure 5.61. Source one is    
100 mV peak and source two is 1 V peak (in phase).

13. In the circuit of Figure 5.62, use superposition to find vab.

14. In the circuit of Figure 5.62, use superposition to find the current through 
the 15 kΩ resistor.

15. In the circuit of Figure 5.63, use superposition to find vab.
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16. In the circuit of Figure 5.63, use superposition to find the current flowing 
through the resistor.

17. For the circuit of Figure 5.64, use superposition to find va and vb. The 
sources are in phase.

18. For the circuit of Figure 5.64, use superposition to find the currents through 
the inductor and capacitor. The sources are in phase.

19. Use superposition in the circuit of Figure 5.65 to find the currents through 
the inductor and capacitor. I1 = 145° and I2 = 245°.

20. Use superposition in the circuit of Figure 5.65 to find vab and vbc. I1 = 10° 
and I2 = 290°.

21. In the circuit of Figure 5.66, Use superposition to find vbc. I1 = 100° and 
I2 = 60°.

22. In the circuit of Figure 5.66, Use superposition to find the current flowing 
through the 2 Ω resistor. I1 = 4120° and I2 = 60°.
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23. Use superposition to determine the current of source E in the circuit of 
Figure 5.67. E = 40180° and I = 20E−30°. 

24. Use superposition to determine vac in the circuit of Figure 5.67. E = 280° 
and I = 8E−3−180°.

25. Use superposition to determine vb in the circuit of Figure 5.68. I = 3E−30° 
and E = 90°.

26. Use superposition to determine the inductor current in the circuit of     
Figure 5.68. I = 4E−30° and E = 18−45°.

27. For the circuit of Figure 5.69, use superposition to determine the inductor 
current. I = 100E−30° and E = 260°.

28. For the circuit of Figure 5.69, use superposition to determine vab.                  
I = 50E−30° and E = 1890°.
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29. Use superposition to determine vab in the circuit of Figure 5.70.                     
I = 10E−30° and E = 120°.

30. Use superposition to determine the capacitor current in the circuit of    
Figure 5.70. I = 5E−30° and  E = 18120°.

31. For the circuit of Figure 5.71, determine the Thévenin equivalent that drives 
the 20 nF capacitor.

32. Given the circuit of Figure 5.71, determine the Norton equivalent that drives
the 20 nF capacitor.

33. For the circuit of Figure 5.72, determine the Thévenin and Norton 
equivalents that drive the 600 Ω resistor if the source E = 120°.

34. Given the circuit of Figure 5.72, determine the Thévenin equivalent that 
drives the j1 kΩ inductive reactance if E = 90°.

35. Given the circuit of Figure 5.72, determine the Norton equivalent that drives
the j2.5 kΩ inductive reactance if E = 2445°.

192

Figure 5.70

Figure 5.71

Figure 5.72



36. Use Thévenin's theorem to find vb in the circuit of Figure 5.72 if                  
E = 180°.

37. Use Thévenin's theorem to find vb in the circuit of Figure 5.73.

38. Determine the Thévenin equivalent that drives the 3.9 kΩ + j1 kΩ combo in 
the circuit of Figure 5.73. Does this combo's impedance achieve maximum 
load power? If not, what combo will achieve maximum power and what is 
the resulting power?

39. Determine the Norton equivalent that drives the 500 Ω resistor in the circuit 
of Figure 5.73. Determine the value of component(s) that when placed in 
series with the 500 Ω resistor will achieve maximum load power (i.e., for 
the combo as the load).

40. For the circuit of Figure 5.74, determine the Thévenin and Norton 
equivalents that drive the combo of 36 Ω + j100 Ω. Does this combo achieve
maximum load power? If not, what combo will achieve maximum power 
and what is the resulting power?

193

Figure 5.73

Figure 5.74



41. For the circuit of Figure 5.75, determine the Thévenin and Norton 
equivalents that drive the combo of 300 Ω in parallel with −j1500 Ω. Does 
this combo achieve maximum load power? If not, what combo will achieve 
maximum power and what is the resulting power? E = 1200°.

42. For the circuit of Figure 5.76, determine the Thévenin and Norton 
equivalents that drive the combo of 4.7 kΩ in parallel with j300 Ω. Does this
combo achieve maximum load power? If not, what combo will achieve 
maximum power and what is the resulting power? I = 200E−30°.

43. Determine the equivalent Y (T) network for the circuit of Figure 5.77.        
R1 = R2 = R3 = 10 kΩ and XL1 = XL2 = XL3 = j10 kΩ.
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44. Determine the equivalent Y (T) network for the circuit of Figure 5.78.

45. Determine the equivalent Y (T) network for the circuit of Figure 5.79.        
R1 = R2 = R3 = 4 kΩ and XC1 = XC2 = XC3 = −j3 kΩ.

46. Determine the equivalent Y (T) network for the circuit of Figure 5.80.

47. Determine the equivalent delta (pi) network for the circuit of Figure 5.81.
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48. Determine the equivalent delta (pi) network for the circuit of Figure 5.82.

49. Determine the equivalent delta (pi) network for the circuit of Figure 5.83.

50. Determine the equivalent delta (pi) network for the circuit of Figure 5.84.
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51. Find voltage vbc in the circuit of Figure 5.85 through the use of one or more 
delta-Y conversions. E = 100°, R1 = 1 kΩ, R2 = 2 kΩ, R3 = 3 kΩ,               
XC = −j4 kΩ and XL = j8 kΩ.

52. Find voltage vbc in the circuit of Figure 5.86 through the use of one or more 
delta-Y conversions. E = 200°, R1 = 1 kΩ, R2 = 8 kΩ, R3 = 3 kΩ,               
XC = −j4 kΩ and XL = j2 kΩ.

DesignDesign  

53. Design an equivalent current source for Figure 5.87. E = 1290°, R = 1 kΩ 
and XC = − j200 Ω. The source frequency is 10 kHz.
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54. Design an equivalent current source for Figure 5.87 if E = 100°,                
R = 2.2 kΩ and C = 100 nF. The source frequency is 1 kHz.

55. Design an equivalent current source for Figure 5.88 if E = 10°, R = 600 Ω 
and L = 2 mH. The source frequency is 20 kHz.

56. Design an equivalent current source for Figure 5.88. E = 290°, R = 10 kΩ 
and XL =  j900 Ω.

57. Design an equivalent voltage source for Figure 5.89. I = 300E−30°,           
R = 4.3 kΩ and XC = −j5 kΩ.

58. Design an equivalent voltage source for Figure 5.89 if I = 100E−3120°,    
R = 75 Ω and L = 1 mH. The source frequency is 10 kHz.

59. Design an equivalent voltage source for Figure 5.90 if I = 10E−30°,          
R = 9.1 kΩ and L = 5 mH. The source frequency is 100 kHz.

60. Design an equivalent voltage source for Figure 5.90 if I = 50E−30°,          
R = 560 Ω and XL = j350 Ω.
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61. Reconfigure the circuit of Figure 5.91 so that it uses only voltage sources. 
Express all new component and source values in terms of the original labels.

62. Reconfigure the circuit of Figure 5.92 so that it uses only current sources. 
Express all new component and source values in terms of the original labels.

63. Redesign the circuit of Figure 5.56 so that it uses only current sources and 
produces the same node voltages as the original circuit.

64. Consider the 600 Ω resistor to be the load in Figure 5.72. Determine a new 
value for the load in order to achieve maximum load power. Also determine 
the maximum load power.

65. Using Thévenin's theorem with the circuit of Figure 5.73, determine a new 
value of capacitive reactance such that it cancels the Thévenin reactance.

66. Using Norton's theorem with the circuit of Figure 5.74, determine a new 
value of inductive reactance such that the inductor current is 1 mA in 
magnitude.
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ChallengeChallenge

67. Redesign the circuit of problem 7 (Figure 5.59) so that it uses only current 
sources and produces the same node voltages as the original circuit.

68. In the circuit of Figure 5.93, use any method or combination of methods to 
determine vab. I1 = 0.050°, I2 = 0.10° and I3 = 0.290°.  

69. In the circuit of Figure 5.94, use any method or combination of methods to 
determine vab. E1 = 50°, E2 = 1090° and E3 = 150°. 

70. In the circuit of Figure 5.94, use any method or combination of methods to 
determine vce. E1 = 150°, E2 = 3090° and E3 = 450°. 
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71. Use any method or combination of methods in the circuit of Figure 5.95 to 
determine vad. E1 = 900°, E2 = 1200° and I = 400E−3180°. 

72. Consider the 2.7 kΩ + j4 kΩ combo to be the load in Figure 5.60. Determine
if this value achieves maximum load power. If not, determine a new value 
for the load in order to achieve maximum load power. Also determine the 
maximum load power.

73. In the circuit of Figure 5.96, assume the source E is 120 volts RMS at 60 Hz.
Determine the value for the load, Z, that will produce maximum load power.
Express Z in terms of a resistor and either an inductor or capacitor. Further, 
specify both the series and parallel equivalents for the load.

74. Convert the circuit of Figure 5.97 into the equivalent delta configuration.
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75. Find the Thévenin equivalent looking into nodes a and b for the circuit of 
Figure 5.98. I = 40°.

76. Find voltage vbc in the circuit of Figure 5.99 through the use of one or more 
delta-Y conversions. E = 1000°, R1 = R2 = 2 kΩ, R3 = 3 kΩ, R4 = 10 kΩ, 
R5 = 5 kΩ, XC1 = XC2 = −j2 kΩ.

77. Given the circuit of Figure 5.100, determine an equivalent circuit using a 
single voltage source. E1 = 1000°, E2 = 60180°, E3 = 4090°,            
E4 = 750°.

202

Figure 5.98

Figure 5.99

Figure 5.100



78. As mentioned earlier, it is possible that certain AC Y and delta networks 
cannot be converted. Consider the circuit of Figure 5.101. Can this circuit be
converted with a practical outcome? Why/why not?

SimulationSimulation

79. Verify the voltage computed for problem 1 by running a transient analysis.

80. Verify the voltage computed for problem 4 by running a transient analysis.

81. Using multiple transient analysis simulations, compare the original circuit of
problem 54 to its converted equivalent. Do this by connecting various 
components to the output terminals, trying several different impedance 
values and checking to see if the two circuits always produce the same 
voltage across this impedance.

82. Using multiple transient analysis simulations, compare the original circuit of
problem 59 to its converted equivalent. Do this by connecting various 
components to the output terminals, trying several different impedance 
values and checking to see if the two circuits always produce the same 
voltage across this impedance.

83. Run a transient analysis to verify the design of problem 70.

84. Run a transient analysis to verify the design of problem 71.
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6 6 Nodal and Mesh AnalysisNodal and Mesh Analysis

6.0 Chapter Learning Objectives6.0 Chapter Learning Objectives

After completing this chapter, you should be able to: 

• Utilize nodal analysis techniques to solve for voltages in multi-source series-parallel RLC networks.
• Utilize mesh analysis techniques to solve for currents in multi-source series-parallel RLC networks.
• Analyze networks that use dependent voltage and/or current sources.

6.1 Introduction 6.1 Introduction 

This chapter presents methods for the analysis of AC circuits that employ resistors, capacitors and inductors 
along with any number of voltage and/or current sources. The methods of interest are nodal analysis and mesh 
analysis. Nodal analysis is the most general technique and can be applied to virtually any circuit. Mesh analysis 
is nearly as versatile and works well if only voltage sources are present. Both analysis methods generate a 
system of simultaneous linear equations that are used to solve the circuit for desired voltages or currents. That is,
the system generates a set of values, either currents or node voltages, rather than individual currents or voltages. 
There are several methods that can be used to solve the simultaneous equations. These include substitution, 
Gauss-Jordan elimination and expansion by minors. These methods are reviewed in Appendix B and are not 
covered in this chapter. Instead, to focus on the circuit analysis aspects with minimal distraction, the 
explanations and examples will simply detail the process of examining the circuit and developing the system of 
equations. The specific technique employed to solve these simultaneous equations depends solely on your 
personal preferences. 

At this point in the study of AC circuits, it is particularly efficient to obtain an advanced scientific calculator that 
can solve the system of equations directly versus working through the solution manually. By doing so, you can 
spend your time more effectively; meaning, mastering the process of circuit analysis and creating the equations. 
Manual solution techniques, though not necessarily difficult, can be tedious, time consuming and error prone. 
Indeed, on larger circuits, there can be a 10:1 differential in time when using a capable calculator versus a 
standard scientific calculator9. If you have not already done so, you should consider obtaining a calculator that 
can solve simultaneous equations with complex coefficients (i.e., the complex real/imaginary quantities we have
been using). Such calculators can be expensive when purchased new, such as the Texas Instruments TI-89 and 
Nspire models. On the used market, perfectly satisfactory older models such as the TI-85 and TI-86 can be 
found at considerable discount. Another model to consider is the Casio FX-9750GII, although it is not quite as 
powerful as some of the other units mentioned.

9 That's like doing three times as many problems in one-third the time. We don't often get these kinds of opportunities.
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Along with nodal and mesh, we shall also introduce the concept of dependent AC 
sources. Dependent sources do not exhibit a fixed value, but rather the current or 
voltage is dependent on some other current or voltage in the circuit. What makes this
interesting is that this controlling current or voltage may itself be affected by the 
value produced by the dependent source. Dependent sources are not lab instruments,
like signal or function generators. Instead, they are used to model the behavior of 
active electronic devices such as bipolar and field effect transistors. Mastering the 
analysis of circuits using dependent sources is critical to the understanding of active 
circuitry that use transistors and similar devices10.

6.2 Nodal Analysis6.2 Nodal Analysis

Nodal analysis can be considered a universal solution technique as there are no 
practical circuit configurations that it cannot handle. It does not matter if there are 
multiple sources or if there are complex configurations that cannot be reduced using 
series-parallel simplification techniques, nodal analysis can handle them all. Further,
nodal analysis tends to “give us what we want”, namely, a set of node voltages for 
the circuit. Once the node voltages are obtained, finding any branch currents or 
component powers becomes an almost trivial exercise. Nodal analysis relies on the 
application of Kirchhoff's current law to create a series of node equations that can be
solved for node voltages. These equations are based on Ohm's law and will be of the 
form i = v/Z, or more generally, i = (1/ZX)∙vA + (1/ZY)∙vB + (1/ZZ)∙vC... 

We will examine two variations on the theme; first, a general version that can be 
used with both voltage and current sources, and a second somewhat quicker version 
that can be used with circuits only driven by current sources. 

General MethodGeneral Method

Consider the circuit shown in Figure 6.1. We begin by labeling connection nodes. 
We are interested in identifying current junctions, that is, places where currents can 
combine or split. These are also known as summing nodes and are circled in blue on 
the figure. We do not concern ourselves with points where just two components 
connect without any other connection, such as points a and c. Once the proper nodes
are identified, reference current directions are assigned. The reference current 
directions are chosen arbitrarily and for convenience. They may be the opposite of 
reality. This is not a problem. If we assign directions that are reversed, we'll simply 
wind up with a current version of a double negative, and the computed node voltages
will work out just fine. 

10 For more on transistors and other semiconductors, see Semiconductor Devices: Theory 
and Application. Another free OER text by the author.
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One node is chosen as the reference. This is the point to which all other node 
voltages are measured against. Typically, the reference node is ground, although it 
does not have to be.

We now write a current summation equation for each summing node, except for the 
reference node. In this circuit there is only one node where currents combine (other 
than ground) and that's node b. Points a and c are places where components connect,
but they are not summing nodes, so we can ignore them for now. Using KCL on 
node b we can say:

   i1 + i2 = i3

Now we'll describe these currents in terms of the source and node voltages, and 
associated components. For example, i3 is the node b voltage divided by −jXC while 
i1 is the voltage across R divided by R. This voltage is va − vb.

va −v b

R
+

v c −v b

jX L

=
v b

− jX C

Noting that va = E1 and vc = E2, with a little algebra this can be reduced to:

( 1
R)E1 +( 1

jX L
)E2 = ( 1

R
+

1
jX L

+
1

− jX C
)v b

 All quantities are known except for vb and thus it is easily found with a little more 
algebra.  If there had been more nodes, there would have been more equations and 
more unknowns, one for each node. As we shall see, this conductance-voltage 
product format turns out to be a convenient way of writing these equations. Also, 
note that the first two terms on the left reduce to fixed current values.

For current sources, the process is similar but a bit more direct. Consider the circuit 
of Figure 6.2. We start as before, identifying nodes and labeling currents. We then 
write the current summation equations at each node (except for ground). We 
consider currents entering a node as positive and exiting as negative. There are two 
nodes of interest here, and thus, two equations each with two unknowns will be 
generated. 

206

Figure 6.1
A simple dual voltage source 
circuit with the currents and 
nodes defined. 



Node a: I1 = i3 + i4

Node b: i3 + I2 = i5,  and rearranging in terms of the fixed source,
Node b: I2 = −i3 + i5

The currents are then described by their Ohm's law equivalents:

Node a:  I 1 =
va −vb

R2

+
v a

R1

Node b:  I 2 =−
va −vb

R2

+
vb

jX L

Expanding and collecting terms yields:

Node a:  I 1 =( 1
R1

+
1
R2
)va −( 1

R2
)v b

Node b:  I 2 =−( 1
R2
)va +( 1

R2

+
1

jX L
)vb

As the impedance values and currents are known, simultaneous equation solution 
techniques may be used to solve for the node voltages. Once again, there are as 
many equations as node voltages. 

One practical point before continuing: It is very important that the coefficients for
the various node voltage terms “line up” when the final system of equations is
written out. That is, there should be a column for the va terms, a column for the vb

terms, and so on. They should not be written out in random order, but rather
following the style shown in Figure 6.3. This format will make it much it easier to
enter the coefficients into a calculator or solve manually. Further, the set of
coefficients must show diagonal symmetry. That is, if we draw a major diagonal
from upper-left to lower-right (red), whatever coefficients are above-right from the
diagonal should be mirrored below-left of the diagonal (blue, purple, green). If the
set of values does not show diagonal symmetry, an error has been made. You must 
go back and recheck the original node summations. Simple as that. Even the simple 
2x2 of Figure 6.2 shows this symmetry (namely, the coefficient of −1/R2 for vb in the
first equation and va in the second).
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Figure 6.3
Diagonal symmetry.
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Example 6.1

Determine the voltage across the inductor in the circuit of Figure 6.4. Source
one is 50° volts RMS and source two 290° volts RMS.

Other than ground, there is only one current summing node in this circuit, 
and that's the junction at the top of the inductor. We will refer to this junction
as node a. Following the outline of Figure 6.1, we define three currents; i1 
entering from the left, i2 entering from the right, and i3 exiting down through 
the inductor. 

   i1 + i2 = i3

Next, these currents are described in terms of the voltages and components. 
We'll number the resistors from left to right.

E1 −v a

R1 − jX C

+
E2 −v a

R2

=
va

jX L

This can be rearranged as:

( 1
R1 − jX C

)E1 +( 1
R2
)E2 = ( 1

R1 − jX C

+
1
R2

+
1

jX L
)v a

Populate with values:

( 1
500 − j 300Ω)5 0 ° V +( 1

400Ω)2 90° V = ( 1
500− j 300Ω

+
1

400Ω
+

1
j 200Ω)v a

This simplifies to:

8.575E-3 31° A +5E-3 90° A = (5.72E-3−46 ° S)va

Solving for the unknown, we find that va = 2.08798° volts RMS.
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Figure 6.4
Circuit for Example 6.1.



Example 6.2

In the circuit of Figure 6.5, determine va and vb. E is 200° volts peak while 
I is 0.10° amps peak. The system frequency is 2 kHz.

There are two nodes of interest here, other than ground. This means we will 
generate two equations with two unknowns (va and vb). Using the standard 
reactance formulas, the inductive and capacitive reactances are found to be 
j125.7 Ω and −j159.2 Ω, respectively. If we assume the reference direction 
for current is from node a to node b, and that the current flow through the 
two center resistors is downward, the equations are:

Node a:  
20 0° V −v a

100+ j 125.7Ω
=

va

250Ω
+

va −vb

− j 159.2Ω

Node b:  
va −vb

− j159.2Ω
+0.1 0° A =

vb

400Ω

Expanding and collecting terms yields:

Node a:

0.1245 −51.5° A =( 1
250Ω

+
1

100+ j 125.7Ω
+

1
− j 159.2Ω)va − ( 1

− j 159.2Ω)vb

Node b:  

0.1 0° A =− ( 1
− j 159.2Ω)va +( 1

400Ω
+

1
− j 159.2Ω)vb

These are simplified, ready for manipulation (note diagonal symmetry).

0.1245 −51.5° A = (8E-3 10.1 ° S)va − (6.281E-3 90° S)vb

0.1 0° A =− (6.281E-3 90 ° S)va +(6.76E-3 68.3 ° S)vb

After solving the system of equations, we see that va = 16.240.09° volts 
and vb = 20.99−22.3° volts.
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Figure 6.5
Circuit for Example 6.2.



Computer SimulationComputer Simulation

To verify the results of the preceding example, the circuit of Figure 6.5 is captured in
a simulator as shown in Figure 6.6.
 

A transient analysis is performed on the circuit. Node voltages 1, 3 and 4 are plotted,
corresponding to the voltage source and nodes a and b, respectively, in Figure 6.7. 
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Figure 6.6
The circuit of Example 6.2 
captured in a simulator.

Figure 6.7
Simulation results for the 
circuit of Figure 6.6.



The amplitudes are just as computed. Node voltage a appears to be nearly in phase 
with the voltage source, as expected. Node voltage b lags the source by between 
one-quarter to one-third of a division, or some 30 microseconds. For a 2 kHz source,
this translates to around −22 degrees, verifying the calculated result.

Example 6.3

For the circuit of Figure 6.8, find va and vb. The system frequency is 1 kHz.  
I1 = 2.50° A and I2 = 10° A.

We will generate two equations with two unknowns, va and vb. The reactance
formulas yield j6.28 Ω and −j15.9 Ω for the inductor and capacitor. If we 
assume the reference direction for current is from node a to node b, and that 
the current flow through the capacitor and inductor is from nodes a and b 
downward, the equations are:

Node a:  2.5 0° A =
va

− j 15.9Ω
+

va −vb

10 Ω

Node b:  
va −v b

10Ω
= 1 0° A +

vb

4+ j 6.28Ω

Expanding and collecting terms yields (note diagonal symmetry):

2.5 0 ° A = ( 1
10Ω

+
1

− j 15.9Ω)va −( 1
10Ω)vb

−1 0 ° A =−( 1
10Ω)va +( 1

10Ω
+

1
4 + j 6.28Ω)vb

2.5 0 ° A = (0.118 32.2 ° S)va − (0.1 0 ° S)v b

−1 0° A = − (0.1 0° S)v a + (0.206−33.3° S) vb

The results are: va = 30.39-38.7° volts and vb = 11.37−20.8° volts.
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Figure 6.8
Circuit for Example 6.3.



Computer SimulationComputer Simulation

To verify the results of the preceding example, the circuit of Figure 6.8 is captured in
a simulator as shown in Figure 6.9.

 
A transient analysis is performed on the circuit. Node voltages 1 and 2 (i.e., nodes a 
and b, respectively) are plotted in Figure 6.10.
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Figure 6.9
The circuit of Example 6.3 
captured in a simulator.

Figure 6.10
Simulation results for the 
circuit of Figure 6.9.



The simulation results agree nicely with the computed values in terms of both 
amplitude and phase.

Inspection MethodInspection Method

The system of equations can be obtained directly through inspection if the circuit 
contains current sources and no voltage sources. Let's take another look at the 
equations developed in the preceding example. For convenience, the circuit is 
reproduced in Figure 6.11 with reactance values. I1 = 2.50° A and I2 = 10° A.

2.5 0° A = ( 1
10Ω

+
1

− j 15.9Ω)va −( 1
10Ω)vb

−1 0° A =−( 1
10Ω)va +( 1

10Ω
+

1
4 + j 6.28Ω)vb

The top equation was built around a current summation at node a while the bottom 
was built around a summation at node b. The first thing that might be apparent is 
that on the left of the equals signs are the current sources connected to these nodes. 
Positive means the current is entering while negative denotes an exiting current. The 
second thing is that, for the node of interest (node a for the top equation, node b for 
the bottom), the coefficients represent the items connected to that particular node. 
For example, in the top equation, the components connected to node a are the 10 Ω 
resistor and the − j15.9 Ω reactance. Likewise, in the bottom equation, the 
components connected to node b are the 10 Ω resistor and the 4 + j6.28 Ω 
impedance. The third thing is that the remaining coefficients consist of the 
components that are in common between the node of interest and the other node 
(i.e., 10 Ω connects a to b for the first equation, and also connects b to a for the 
second equation). These other connections always show up as negative. The reason 
for this should be apparent if you examine the structure of the original equations 
from Example 6.3.

If there is no bridging element between a node and the node of interest, then that 
coefficient will be zero. If voltage sources exist in the circuit, source conversions 
can be used to obtain an equivalent circuit that uses only current sources. 

213

Figure 6.11
Circuit of Example 6.3 with 
reactances.



The huge advantage of the inspection method is that it cuts out a time consuming 
and error prone section of the process, namely converting the original KCL 
summations into a set of simplified equations with coefficients for each unknown. 
The inspection method generates the equations directly. To further speed the process,
it can be useful to turn each impedance value into a corresponding admittance value 
before creating the equations. In this way, the reciprocals are computed once for 
each item rather than multiple times in multiple equations. Finally, remember that 
the resulting set of equations must exhibit diagonal symmetry, as shown back in 
Figure 6.3.

The inspection method is summarized as follows:

1. Verify that the circuit uses only current sources and no voltage sources. If 
voltage sources exist, they must be converted to current sources before 
proceeding.

2. Find all of the current summing nodes and number (or letter) them. Also 
decide on the reference node (usually ground).

3. To generate an equation, locate the first node. This is the node of interest and
the next few steps will be associated with it.

4. Sum the current sources feeding the node of interest. Entering is deemed 
positive while exiting is deemed negative. The sum is placed on one side of 
the equals sign.

5. Next, find all of the impedances connected to the node of interest and write 
them as a sum of admittances on the other side of the equals sign, the group 
being multiplied by this node's voltage (e.g., v1). That makes one term.

6. Now for the other terms. Find all of the admittances that are connected 
between the node of interest and the next node (e.g., node 2). Sum these 
together and multiply the group by this other node's voltage (e.g., v2). 
Subtract that product from the equation built so far. Repeat this process until
all of the other nodes have been examined (except ground). If there are no 
common impedances between the node of interest and the other node, use 
zero for the coefficient of that node's voltage. Once all other nodes are 
considered, this equation is finished.

7. Go to the next node and treat this as the new node of interest. 
8. Repeat steps 4 through 7 until all nodes have been treated as the node of 

interest. Each iteration creates a new equation. There will be as many 
equations as there are nodes, less the reference node. Check for diagonal 
symmetry and solve.

The inspection method is best observed in action, and is used in the following 
example. 

214



Example 6.4

Write the system of equations for the circuit of Figure 6.12.  I1 = 100° A 
and I2 = 490° A.

We begin at node a, the first node of interest. Find all of the current sources 
connected to this node. All we have is I1. It is exiting, and thus negative.

−10 0° A = ...

Now find all of the items connected to this node and create a sum of 
admittances.

−10 0° A =( 1
4Ω

+
1

2Ω
+

1
8Ω)v a ...

Include the terms that are common between node a and node b. This is 
negative.

−10 0° A =( 1
4Ω

+
1

2Ω
+

1
8Ω)v a −( 1

2Ω)vb ...

And finally, include the terms common between node a and node c. This is 
also negative.

−10 0° A =( 1
4Ω

+
1

2Ω
+

1
8Ω)v a −( 1

2Ω)vb −( 1
8Ω)vc

The first equation is done. We now make node b the node of interest and 
repeat the process.

215

Figure 6.12
Circuit for Example 6.4.



Find all of the current sources connected to this node. There are none.

0 = ...

Find all of the items connected to this node and create a sum of admittances.

0 = ...+( 1
1Ω

+
1

2Ω
+

1
− j 5Ω)v b ...

Include the terms that are common between node a and node b. This is 
negative and goes into the lead (a before b) to keep everything nicely lined 
up.

0 =−( 1
2Ω)v a +( 1

1Ω
+

1
2Ω

+
1

− j 5Ω)v b ...

Now include the terms common between node b and node c. This is also 
negative and is inserted at the tail (c after b).

0 =−( 1
2Ω)v a +( 1

1Ω
+

1
2Ω

+
1

− j 5Ω)v b −( 1
1Ω)vc

The second equation is finished. We now make node c the node of interest 
and repeat the process for the final time.

Find all of the current sources connected to node c. We have both I1 and I2 
entering.

10 0° A+4 90 ° A = ...

This current is equivalent to 10.7721.8°. Now find all of the items 
connected to this node and create a sum of admittances.

10.77 21.8° A = ...( 1
1Ω

+
1

8Ω
+

1
j 10Ω)v c

Include the terms that are common between node c and node a. This is 
negative and goes into the lead (a before c).

10.77 21.8° A =−( 1
8Ω)va ... +( 1

1Ω
+

1
8Ω

+
1

j 10 Ω)v c

Now include the terms common between node b and node c. This is also 
negative and is inserted in the middle (b before c).
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10.77 21.8° A =−( 1
8Ω)va −( 1

1Ω)v b +( 1
1Ω

+
1

8Ω
+

1
j 10 Ω)vc

The third and final equation is finished. The completed set of equations is:

−10 0° A = ( 1
4Ω

+
1

2Ω
+

1
8Ω)va −( 1

2Ω)vb −( 1
8Ω)vc

0 =−( 1
2Ω)va +( 1

1Ω
+

1
2Ω

+
1

− j 5Ω)vb −( 1
1Ω)v c

10.77 21.8° A =−( 1
8Ω)va −( 1

1Ω)vb +( 1
1Ω

+
1

8Ω
+

1
j 10Ω)vc

Note that the set exhibits diagonal symmetry and that all coefficient groups 
are negative except for those along the major diagonal. Consequently, the 
coefficient groups may now be simplified to obtain single coefficients for 
the unknowns, and the equations are ready for solution. The results are: 
va = 10.972.8° volts, vb = 23.634.7° volts and vc = 31.237.3° volts. 
These values can be crosschecked by using them to find the currents through
each component, and then verifying KCL for each node.

Although this example may appear to be somewhat long winded, with a little
practice the process will become second nature. At that point, the set of 
equations can be created quickly and with little possibility of error, even for 
large circuits with many nodes. 

Using Source ConversionsUsing Source Conversions

As mentioned previously, given circuits with voltage sources, it may be easier to 
convert them to current sources and then apply the inspection technique rather than 
using the general approach outlined initially. There is one trap to watch out for when
using source conversions: the voltage across or current through a converted 
component will most likely not be the same as the voltage or current in the 
original circuit. This is because the location of the converted component will have 
changed. For example, the circuit of Figure 6.5 (Example 6.2) could be solved using 
the inspection method of nodal analysis by converting the voltage source and its 
associated impedance of the 100 Ω resistor in series with the 10 mH inductor into a 
current source. Although the associated impedance still connects to the converted 
source, the other end no longer connects to node a. Rather, it would connect to 
ground. Therefore, the voltage drop across this impedance in the converted circuit is 
not likely to equal the voltage drop seen across it in the original circuit (the only way
they would be equal is if the voltage source E turned out to be 0). 
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SupernodeSupernode

From time to time you may see a circuit utilizing an ideal voltage source like the
one shown in Figure 6.13. That is, this voltage source does not have a series
impedance associated with it. Without that impedance, it becomes impossible to
create an expression for the current passing through the source using the general
method, and impossible to convert the voltage source into a current source in
order to use the inspection method. There are a few of ways out of this quandary.
The first way is to recognize that all realistic sources have some internal
impedance, so we simply add a very small resistor in series with the source so
that a source conversion is possible. Of course, not just any resistor will do. In
order to maintain accuracy, the newly added resistance has to be much smaller
than any surrounding resistances or reactances. A reduction by two orders of
magnitude generally yields a variation smaller than that produced by component
tolerances in all but high precision circuits and will usually do the trick. Still
smaller values will further increase accuracy. Another way out is to use a 
supernode. 

A supernode is, in effect, the combination of two nodes. It relies on a simple 
observation. If we examine the circuit of Figure 6.13, the path of the voltage source 
produces identical currents flowing into and out of nodes a and b. As a consequence,
if we treat the two nodes as one big node, then when we write a KCL summation, 
these two terms will cancel. To see just how this works, refer to Figure 6.14.

In this version we have replaced the voltage source with its ideal internal impedance;
a short. We have also labeled the two nodes of interest, a and b, and labeled the 
currents, drawn with convenient reference directions. The specific choice of 
direction will not matter, just use whatever scheme seems appropriate.

Due to the shorted voltage source, nodes a and b are now the same node. Take a look
at the currents entering and exiting this combined “super” node. On the left side 
(formerly node a) we see a constant current Ix entering while i1, i2 and i3 are exiting. 
On the right side (formerly node b) we see the Iy entering along with i1 and i2, and 
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Figure 6.13
Bridging voltage source 
without an internal 
impedance.

Figure 6.14
Circuit modified for supernode 
analysis.



exiting we see i4. At this point we'll create an expression where all of currents 
entering the super node are on the left side of the equals sign and all of the exiting 
currents are on the right:

Σ i in = Σ iout

I x+ I y+i1+ i2 = i1+i2+i3+i4

This can be simplified to:

I x+ I y = i3 + i4

Writing this in terms of Ohm's law we have:

I x+I y =
1

− j X C

va +
1

j X L

vb

We also know that va − vb = E from the original circuit. We know this because the 
reference polarity of the source is + toward the a node and − toward the b node. 
Therefore it must be  va − vb and not  vb − va. Assuming all sources and components 
are known, that makes two equations with two unknowns, solvable using 
simultaneous equation techniques. This is illustrated in the following example.

Example 6.5

Find va and vb for the circuit of Figure 6.15. E = 160° volts, Ix = 0.10°
amps and Iy = 0.2590° amps.

The circuit is redrawn in Figure 6.16 with nodes and currents labeled.
We short the 16 volt source and write a current summation at the a:b
supernode:

Σ i in = Σ iout

0.1 0° A+0.25 90° A+i1+i2 = i1+i2+i3+i4

This can be simplified to:

0.2693 68.2° A = i3 +i4

Writing this in terms of Ohm's law we have:

0.2693 68.2° A =
1

− j 100Ω
va +

1
j 500Ω

vb

0.2693 68.2° A = j 10 mSv a − j 2 mSvb
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Figure 6.15
Circuit for Example 6.5.



We also know that va − vb = 160° volts. Therefore vb = va − 160° volts.
Substituting this into the prior equation yields:

0.2693 68.2° A = j 10 mSv a − j2 mS(va −16 0° V)

0.2693 68.2° A = j 10 mSv a − j2 mSva +32E-3 90 ° A
0.2394 67.9° A = j 8 mSva

 
va = 29.92−22.1° V

We know that vb is 160° volts below va, and thus after subtracting,
we find vb = 16.24−43.8° volts. 

To verify, we will perform a KCL summation at each node. For node 
a, assuming i1 exits as drawn: 

i1 = 0.1 0° A −
v a

− j 100Ω
−

v a−v b

200Ω

i1 = 0.1 0° A−
29.92−22.1° V

− j 100Ω
−

29.92−22.1° V−16.24−43.8° V
200Ω

i1 = 0.292−108 ° A

Doing likewise for node b, and assuming i1 enters as drawn:

i1 =−0.25 90° A+
vb

j 500Ω
−

v a−vb

20 Ω

i1 =−0.25 90° A+
16.24−43.8 ° V

j 500Ω
−

29.92−22.1° V−16.24−43.8° V
200Ω

i1 = 0.292−110 ° A

Other than the small deviation due to accumulated rounding, these currents 
match. That means that the current through the voltage source is verified to 
be the same at both terminals, as it must be.

An alternative to the basic supernode technique is to recognize that the two nodes on
either side of the voltage source are effectively locked together by the source 
voltage. That is, if one of the node voltages is found, then the other may be 
determined by adding or subtracting the source voltage to or from the known node 
voltage, depending on the reference polarity. This idea is exploited by simply 
describing one node voltage in terms of the other at the outset. This will reduce the 
total number of unknowns by one and reduce the system of equations by one. The 
technique is illustrated in the example following.
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Figure 6.16
Circuit modified for supernode
analysis.



Example 6.6

Find node voltages va, vb and vc for the circuit of Figure 6.17. The sources
are: E = 200° volts and I = 245° amps.

Once again we have a situation of a voltage source lacking a series 
impedance which makes a source conversion impossible. Without having to 
short it and thus treating nodes a and c as an explicit supernode, we can take 
an alternate route. We begin by noting that the currents entering and exiting 
the voltage source must be identical. 

The circuit is redrawn in Figure 6.18 with the nodes and convenient current 
directions labeled. The circuit also uses equivalent conductances and  
susceptances in place of the original resistances and reactances in order to 
speed the process of simplifying the equations. Unlike the basic supernode 
technique, this time the voltage source is left in. 

The key observation is that vc = va − 200° V. In other words, vc is locked to 
va and if we find one of them, we can determine the other. Therefore, instead
of writing three equations using three unknowns, we shall instead refer to 
node c in reference to node a. In other words, wherever we need vc we 
instead shall write va − 200° V. Thus, this three node circuit will only need 
two equations.

We begin at node a and apply KCL as usual.

Σ i in = Σiout

i1+i3 = i2

This is expanded using Ohm's law and we solve for i1:

i1 = i2 −i3

i1 = j 0.5 S v a −0.25S(vb −v a)

i1 =(0.25 + j 0.5)S va −0.25S v b

On to node b:

I = i3+i4

2 45 ° A = 0.25S (v b −va ) +0.1S(vb −v c)

2 45 ° A = 0.25S (v b −va ) +0.1S(vb −(v a −20 0° V))

2 45 ° A = 0.25S (v b −va ) +0.1S(vb −v a +20 0° V)

2 45 ° A = 0.25S (v b −va ) +0.1S(vb −v a) +2 0° A
 
1.531 112.5° A =−0.35S v a +0.35S v b
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Figure 6.17
Circuit for Example 6.6.

Figure 6.18
Circuit of Example 6.6 with 
currents labeled and using 
conductances.



And finally node c: 

i4 = i1 +i5

i1 = i4 −i5

i1 = 0.1S(vb −v c)−(− j 0.2S)vc

i1 = 0.1S(vb −(v a−20 0° V)) +j 0.2S(va −20 0° V)

i1 = 0.1S(vb −v a +20 0° V) + j0.2 S(va −20 0° V)

i1 = 0.1S(vb −v a) +j 0.2S va +(2 − j 4)A
 
i1 =(−0.1 +j 0.2)S v a +0.1S vb +4.472−63.4° A

The equations for nodes a and c both equal i1, thus they equal each other. 

(0.25+j 0.5)Sv a −0.25Svb =(−0.1 +j 0.2)S v a +0.1S vb +4.472−63.4° A
4.472−63.4 ° A =(0.35 +j 0.3)S v a − 0.35S vb

The final equations are:

4.472−63.4° A =(0.35 + j 0.3)S va − 0.35S vb

1.531 112.5 ° A =−0.35S v a +0.35S vb

The solution is va = 9.823 151.3− ° volts and vb = 10.31 176.2− ° volts. As 
vc is 200° volts less than va, then vc = 29 170.6− ° volts. KCL summations 
at each of the three nodes will verify these values.

6.3 Mesh Analysis6.3 Mesh Analysis

Mesh analysis is similar to nodal analysis in that it can handle complex multi-source 
circuits. In some ways it is the mirror image of nodal analysis. While nodal analysis 
uses Kirchhoff's current law to create a series of current summations at various 
nodes, mesh analysis uses Kirchhoff's voltage law to create a series of loop 
equations that can be solved for mesh currents. The current through any particular 
component may be a mesh current or a combination of mesh currents. Of course, 
once those currents are found, it is a short hop to find any desired voltage. Mesh 
does have one limitation that nodal doesn't: Mesh analysis requires that the circuit  
be planar. That is, the circuit must be able to be drawn on a flat surface without any 
wires crossing each other. Another way of looking at it is that planar circuits can be 
drawn to appear as a series of boxes butting up against each other. To get a visceral 
idea of this notion, grab a piece of paper and place four dots on it. Try to draw a line 
from each dot to every other dot but without crossing any lines. After a few tries, 
you should be successful. Now try it with five dots. You can't do it unless you “draw 
in the air” and hop over other lines. Obviously, that's possible with real circuits 
because they're 3D. Therefore there are circuits that cannot be solved using mesh. 
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Consider the circuit of Figure 6.19. This circuit has two voltage sources and
cannot be simplified further, although it can be solved using either superposition
or nodal analysis. For mesh analysis, we begin by designating a set of current
loops. These loops should be minimal in size and together cover all components
at least once. By convention, the loops are drawn with a clockwise reference
direction. There is nothing magical about them being clockwise, it is just a
matter of consistency. The annotated version of the circuit is redrawn in
Figure 6.20. 

Here we have two loop currents, i1 and i2. Note that all components exist in at
least one loop (and sometimes in more than one loop, like capacitor C).
Depending on circuit values, one or more of these loop directions may in fact be 
opposite of reality. This is not a problem. If the true reference direction is opposite, 
then the currents will show up as negative values, and thus we know that the real 
reference direction is counterclockwise. Just remember that a positive result means a
clockwise direction and negative indicates counterclockwise. 

We begin by writing KVL equations for each loop.

Loop 1: E1 = voltage across R + voltage across XC

Loop 2: −E2 = voltage across XC + voltage across XL  

Note that E2 is negative as i2 is drawn flowing out of its negative terminal. Now 
expand the voltage terms using Ohm's law. The resistor and inductor each see a 
single current, i1 and i2, respectively. The capacitor experiences both currents. From 
the perspective of loop 1, i2 is flowing in the opposite direction. Thus, the net current
is i1 − i2. From the perspective of loop 2, i1 is flowing in the opposing direction and 
thus the net current is i2 − i1. The reference voltage polarities reinforce this notion.

Loop 1: E1 = i1 R + (i1 − i2)(−jXC)
Loop 2: −E2 = i2 (jXL) + (i2 − i1)(−jXC)

Multiplying out and collecting terms yields:

Loop 1: E1 = (R −jXC) i1 − (−jXC) i2

Loop 2: −E2 = − (−jXC) i1 + (jXL −jXC) i2
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Figure 6.19
A simple two-source circuit.

Figure 6.20
Circuit with mesh loops and 
voltage polarities drawn.



As the component values and source voltages are known, we have two equations 
with two unknowns. These can be solved for i1 and i2 using the simultaneous 
equation solution techniques of your choice. 

Example 6.7

For the circuit of Figure 6.21, determine vb and vc. The sources are: 
E1 = 90° volts and E2 = 12−90° volts.
 

We begin by labeling our loops, as shown in Figure 6.22. Each loop will 
generate an equation based on a KVL summation around that loop. We will 
number the components from left to right, as usual.

For loop 1:

E1 −E2 =( jX L1+R1)i1+R2(i1 −i2)

E1 −E2 =(R1+R2+jX L1)i1 −R2 i2

9 0° V −12 −90 ° V =(20+80+ j 20 Ω)i1 −20Ω i2

15 53.1 ° V = (100+ j 20 Ω)i1 −20Ωi2

Repeat for loop 2:
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Figure 6.21
Circuit for Example 6.7.

Figure 6.22
Circuit of Figure 6.21 with 
current loops drawn.



E2 =(− jX C+ jX L2)i2+R2 (i2 −i1)

E2 =−R2 i1+(R2 − jX C+ jX L2)i2

12 −90 ° V =−20Ωi1 +(20 − j 75+j 50Ω)i2

12 −90 ° V =−20Ωi1 +(20 − j 25Ω)i2

The two loop equations are:

15 53.1° V =(100+ j 20Ω)i1 −20Ωi2

12 −90 ° V =−20Ωi1 +(20 − j 25Ω)i2

The equations show diagonal symmetry. The currents are i1 = 0.178519.9° 
amps and i2 = 0.3529−21.4° amps. To find the voltages vb and vc, we just 
need to apply Ohm's law. The voltage vc is the potential across the j50 Ω 
inductor. 

v c = i2× jX L2

v c = 0.3529− 21.4° A× j 50Ω

v c=17.64 68.6 ° V

The potential vb is found similarly.

vb = i2×(− jX C+ jX L2)

vb = 0.3529 −21.4 °×(− j 75Ω +j 50 Ω)

vb=8.823−111.4 ° V

For verification, we can also find vb by subtracting the voltage developed 
across the series inductor/resistor pair from the first source.

vb = E1 − i1×(R1+ jX L1)

vb = 9 0 ° V − 0.1785 19.9° A×(80 + j 20 Ω)

vb=8.823−111.4 ° V

Example 6.8

In the circuit of Figure 6.23, find vb. E = 100° volts peak at a frequency of 
10 kHz.

The circuit is a bridge network. Even though it has only a single voltage 
source, basic series-parallel techniques will not work here. Nodal analysis 
can also work here as can delta-Y conversion, however, mesh is an excellent
choice for this layout. 
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We start by finding the reactance values. Using the standard reactance 
formulas we find that XL = j628.3 Ω and  XC = −j318.3 Ω. After substituting 
these into the original circuit and defining the loops, we have Figure 6.24.

We have three loops with three unknown currents, and therefore three 
equations. We'll number the resistors from left to right. For loop 1:

E = vC+v R1

E =− jX C (i1 −i2)+R1 (i1 −i3)

E =(R1 − jX C)i1 −(− jX C)i2 −R1 i3

10 0° V =(1k Ω− j 318.3Ω)i1+ j318.3Ωi2 −1k Ωi3

For loop 2:

0 = vC+v L+v R2

0 =− jX C (i2 −i1)+jX L(i2 −i3)+jX L i3

0 =−(− jX C)i1+(R2+X L − jX C)i2 −R2 i3

0 =−(− j 318.3Ω)i1+(500+j 628.3 − j 318.3Ω)i2 −500Ωi3

0 = j 318.3Ωi1+(500+j 310Ω)i2 −500Ωi3
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Figure 6.23
Circuit for Example 6.8.

Figure 6.24
Circuit of Figure 6.23 with 
reactance values and current 
loops drawn.



For loop 3:

0 = v R1+v R2+v R3

0 = R1(i3 −i1)+R2(i3 −i2)+R3i3

0 =−R1i1 −R2 i2+(R1+R2+R3)i3

0 =−1 kΩi1 −500Ωi2+(1k Ω+500Ω+2k Ω)i3

0 =−1 kΩi1 −500Ωi2+3.5k Ωi3

The final set of equations is:

10 0 ° V =(1k Ω− j 318.3Ω)i1+ j 318.3Ωi2 −1k Ωi3

0 = j 318.3Ωi1+(500+ j 310Ω)i2 −500Ω i3

0 =−1 kΩ i1 −500 Ωi2+3.5k Ωi3

The system of equations has diagonal symmetry. The results are: 
i1 = 10.24E-316° amps, i2 = 6.754E-3−85.7° amps and 
i3 = 2.888E-3−3.13° amps.

For vb, this is just the voltage across the 1 kΩ resistor. Note that a pair of 
meshing currents (i1 and i3) are flowing through that resistor, so we must 
determine the net value of current. If we assume the reference polarity for vb 
is positive, that coincides with the direction of i1, and thus the net current 
must be i1 − i3. The result is inet = 7.57E−323.2° amps. Therefore, 
vb = 7.5723.2° volts.

Computer SimulationComputer Simulation

Figure 6.25 shows the bridge circuit of Example 6.8 captured in a simulator. This 
will be used to verify the computed result.
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Figure 6.25
Circuit of Figure 6.23 in a 
simulator.



A transient analysis is run on the circuit, plotting node 2 which corresponds to vb, 
and node 1, the input voltage, which is handy for phase reference. 

Examining the plot, we can see that the node 2 voltage is just above 7.5 volts peak, 
as calculated. Further, this waveform leads the the input waveform by just over a 
quarter of a division. As this plot shows four divisions per cycle, each division is 90 
degrees. This indicates a leading or positive phase shift in the low 20 degree range, 
and that corroborates nicely the computed value of 23.2 degrees.

Inspection MethodInspection Method

Like nodal analysis, it is possible that the system of equations can be obtained 
directly through inspection. This is true only if the circuit contains no current 
sources. Look at the final set of equations derived in Example 6.8 from Figure 6.24. 
A clear pattern will emerge. To generate an equation for a given loop, simply focus 
on that loop and ask the following questions: What is the total source voltage in this 
loop? This yields the voltage constant on the left side of the equals sign. Next, sum 
the resistance and reactance values in the loop under inspection. This yields the 
coefficient for that current term. For the other current coefficients, sum the 
resistances and reactances that are in common between the loop under inspection 
and the other loops (e.g., for loop 1, XC is in common with loop 2). These values will
always be negative (an exception arises with a “double negative”, as seen with the 
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Figure 6.26
Transient analysis for the 
circuit of Figure 6.25.



capacitor). As usual, the set of equations produced must exhibit diagonal symmetry. 

While it is possible to extend this technique to include current sources, usually it is  
easier and less error-prone to convert the current sources into voltage sources. Then 
the process can continue with the direct inspection method outlined above. Finally, it
is important to remember that the number of loops determines the number of 
equations to be solved. This method will be illustrated in the example following.

Example 6.9

For the circuit of Figure 6.27, find vb and the current through the 15 Ω 
resistor. E1 = 100° volts peak and E2 = 2090° volts peak.

We identify and label three loops, as shown in Figure 6.28. This circuit 
utilizes only voltage sources and no current sources. Therefore, we can 
apply the inspection method without extra effort.

We start at loop 1 and sum all of the voltage sources. The sole source is E1.

10 0° V = ...

Now we sum all of the resistances and reactances in this loop. This is the 
coefficient for the first current term.

10 0° V =(20Ω+6Ω+j 8Ω)i1 ...
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Figure 6.27
Circuit for Example 6.9.

Figure 6.28
Circuit of Figure 6.27 with 
current loops drawn.



We continue the process by determining the components that are in common
between this loop and the next loop. Remember, this coefficient is negative.

10 0° V =(20Ω+6Ω+j 8Ω)i1 −(6Ω+j 8Ω)i2 ...

We repeat the process by determining the common components with the 
next loop. This coefficient is negative. In this situation, no components are 
in common between loops 1 and 3. We shall leave in placeholder with a 
coefficient of zero, just as a reminder that we didn't forget anything and also 
to ensure that the coefficients in the final set of equations line up nicely.

10 0° V =(26+j 8Ω)i1 −(6+j 8Ω)i2 −0 i3

We now move to loop 2 and repeat the sequence of steps. There is only one 
source, E2, and it shows up negative as mesh current i2 is flowing out of its 
negative terminal. The result is:

−20 90° V =−(6+ j 8Ω)i1+(6+10+j8 − j 14 Ω)i2 −10Ωi3

−20 90° V =−(6+ j 8Ω)i1+(16 − j 6Ω)i2 −10Ω i3

And finally the third loop. Here the second source shows up as positive.

20 90° V =−0 i1−10Ω i2 −(10+15− j 12Ω)i3

20 90° V =−0 i1−10Ω i2 −(25 − j 12Ω)i3

The completed system of equations is:

 
10 0° V =(26+j 8Ω)i1 −(6+j8Ω)i2 −0 i3

−20 90° V =−(6+ j 8Ω)i1+(16 − j 6Ω)i2 −10Ωi3

20 90 ° V =−0i1−10Ωi2 −(25 − j 12Ω)i3

The system has diagonal symmetry. The resulting currents are:
i1 = 0.6131−15.5° amps, i2 = 0.6687−49.2° amps and 
i3 = 0.561199.3° amps.

The current through the 15 Ω resistor is i3, so that much is done. Regarding 
vb, it can be found using Ohm's law as vb is the series connection of the 6 Ω 
resistor and j8 Ω inductor times the current through them. This current is the 
pair of meshing currents i1 and i2. Assuming the reference polarity for vb is 
positive, that is the direction of i1, and thus the net current must be i1 − i2. 
The result is 0.37565.8° amps. Therefore, vb = 3.75119° volts. To 
crosscheck this, we can subtract the voltage across the 20 Ω resistor from E1.
That's 100° volts minus 20 Ω times 0.6131−15.5° amps, or 3.75119° 
volts, as expected.
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Supermesh Supermesh 

On occasion you may find a current source which has no associated internal 
impedance, such as the one in the circuit of Figure 6.29. This is similar to the 
situation discussed previously with nodal analysis where a voltage source does not 
have a specified internal impedance. As with nodal, there are two ways of solving 
this predicament. The first technique is to add a very large impedance in parallel 
with the current source and then perform a source conversion on the pair so that the 
inspection method of mesh can be used. The larger the value of this impedance, the 
greater the accuracy. As a general rule it should be at least a couple of orders of 
magnitude larger than any surrounding impedance, and preferably larger. The second
technique is to use supermesh. A supermesh is a larger mesh loop than contains other
mesh loops inside of it.

Refer to the circuit shown in Figure 6.29. In the center we have a current source, Is, 
which lacks an associated internal impedance. Two traditional mesh loops, i1 and i2, 
are labeled as usual. The problem here is that we cannot use an Ohm's law-based iZ 
voltage drop for vb. We have no way to express this as the voltage across Is is an 
unknown. On the other hand, what we do know is that Is must equal the combination
of the original mesh currents i1 and i2. That is, from the perspective of the first loop, 
Is = i2 − i1. Remember, one or both of the mesh currents could be negative, and thus 
rotating counterclockwise.

At this point we invoke the idea of a supermesh loop. First, we replace the 
problematic current source with its ideal internal impedance, an open. Second, a 
supermesh loop is drawn which encompasses the original two loops. This is shown 
in Figure 6.30. The supermesh loop is shown in red and labeled.

231

Figure 6.29
Circuit for supermesh.

Figure 6.30
Supermesh labeled.



We now perform a KVL summation around the supermesh loop, similar to what we 
have done in prior work. The difference this time around is that we need to 
recognize that components each see one of the original mesh currents; namely i1 or 
i2 here. We do not solve for a supermesh current. Instead, we just use the supermesh 
loop to define the KVL summation. The summation follows:

Σv rises = Σ vdrops

 
E1 = vR+v XL+E2

The voltage drops across the resistor and inductor can be expanded using Ohm's law,
using the original mesh current associated with each component.

E1 −E 2 = i1 R + i2 jX L

 
Also, by inspection, 

I s = i2 −i1   or
i2 = i1 +I s

We now have two equations with two unknowns and can solve for i1 and i2. This 
procedure is illustrated in the following example.

Example 6.10

Find vb for the circuit of Figure 6.31. E1 = 200° volts, E1 = 1890° volts
and IS = 10E−30° amps.

First, we label the loops, as shown in Figure 6.32.

Now we perform a KVL summation around the supermesh loop.

Σv rises = Σ vdrops

 
20 0° V = vR+v XL+18 90° V

Expand using Ohm's law and rearrange:

20 0° V −18 90° V = 1kΩ i1+j 400Ωi2

26.9−42° V = 1kΩ i1+j 400Ωi2

232

Figure 6.31
Circuit for Example 6.10.



By inspection we can see that:

10E-3 0 ° A = i2 −i1   or
i2 = i1 +10E-3 0° A

We can substitute this expression into the prior supermesh
expression and solve for i1: 

26.9−42° V = 1kΩi1+j 400Ωi2

26.9−42° V = 1kΩi1+j 400Ω(i1+10E-3 0° A)

26.9−42° V = 1kΩi1+j 400Ωi1+4 90° V
29.7−44.7° V =(1 k+j 400Ω)i1

 
i1 ≈ 27.6E-3−69.5° A

Thus, i2 = 27.6E−3−69.5° amps + 10E−30° amps, or 32.5E−3 52.8− ° 
amps. To determine vb we simply subtract the drop across the 1 kΩ resistor 
from E1:

vb = 20 0° V − i1 1k Ω

vb = 20 0° V − 27.6E-3−69.5° A1 kΩ

vb ≈ 27.85 68.2° V

As a crosscheck, we could also add the voltage across the inductor to E2:

vb = 18 90° V +i2 j 400Ω

vb = 18 90° V +32.5E-3−52.8° A j400Ω

vb ≈27.85 68.2° V

Comparison of Nodal and MeshComparison of Nodal and Mesh

Having covered both nodal and mesh in some detail, it is fair to look at the two 
techniques to gauge their strengths and weaknesses. Compared to nodal analysis, 
mesh analysis has the advantage of dealing with impedances rather than admittances
when writing the system of equations. Further, the mesh inspection method works 
with voltage sources, which tends to be convenient for many circuits, while the 
nodal inspection method requires current sources. On the down side, the resulting set
of mesh currents requires further processing in order to find either branch currents or
node voltages. In contrast, nodal analysis produces node voltages directly with no 
further processing. Mesh also has the disadvantage of being limited to planar circuits
while there is no such limit to nodal. Ultimately, instead of thinking in terms of 
which technique is “better” overall, it is more efficient to use the proper tool for the 
job at hand. For example, if a circuit is populated with voltage sources, mesh might 
be the more efficient route, especially if specific currents are desired. On the other 

233

Figure 6.32
Circuit of Figure 6.31 with 
supermesh labeled.



hand, if you need to find voltages in a circuit that contains numerous current 
sources, nodal would be more effective. 

6.4 Dependent Sources6.4 Dependent Sources

A dependent source is a current or voltage source whose value is not fixed. Instead, 
the value depends on some other circuit current or voltage. The general form for the 
value of a dependent source is N = kM where M and N are currents and/or voltages 
and k is the proportionality constant. For example, the value of a dependent voltage 
source may be a function of a current, so instead of the source being equal to, say, 10
volts, it could be equal to twenty times the current passing through a particular 
resistor, or v = 20i. 

There are four possible dependent sources: They are the voltage-controlled voltage 
source (VCVS), the voltage-controlled current source (VCCS), the current-controlled 
voltage source (CCVS), and the current-controlled current source (CCCS). The 
source and control parameters are the same for both the VCVS and the CCCS so k has
no units, although it may be given as volts/volt and amps/amp, respectively. For the 
VCCS and CCVS, k has units of amps/volt and volts/amp, respectively. These are 
referred to as the transresistance and transconductance of the sources with units of 
ohms and siemens.

The schematic symbols for dependent or controlled sources are usually drawn using 
a diamond instead of a circle. Also, for simulators, there will be a secondary 
connection for the controlling current or voltage. Examples of voltage-controlled 
and current-controlled sources are shown in Figure 6.33. On each of these symbols, 
the control element is shown to the left of the source.

The control portion can be thought of as a connection for a voltmeter or ammeter
which senses the control parameter. These sensing connections are not always
drawn on a schematic. Instead, the source simply may be labeled as a function, as
in v = 0.02 iX where iX is the controlling current. These simpler controlled sources
are shown in Figure 6.34 and are typical in electronic schematics and texts. In some
cases, these sources are drawn with a circle instead of a diamond. Also, the sine 
wave shape shown here is often omitted from the inside of symbol, however, current
sources are always drawn with an arrow pointing in the reference direction and 
voltages sources always include the reference polarity.
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Figure 6.33
Dependent source symbols as 
used in common simulators (left
to right): VCVS, CCVS, VCCS, 
and CCCS. 

Figure 6.34
Generic symbols for 
dependent voltage source (left)
and current source (right). 



Dependent sources are not “off-the-shelf” items in the same way that a battery or 
signal generator are. Rather, dependent sources are used to model the behavior of 
more complex devices. For example, a bipolar junction transistor commonly is 
modeled as a CCCS while a field effect transistor may be modeled as a VCCS. 
Similarly, many amplifier circuits are modeled as VCVS systems. Solutions for 
circuits using dependent sources follow along the lines of those established for 
independent sources (i.e., the application of Ohm's law, KVL, KCL, etc.), however, 
the sources are now dependent on the remainder of the circuit which tends to 
complicate the analysis. In general, there are two possible circuit configurations for 
dependent sources: isolated and coupled. An example of the isolated form is shown 
in Figure 6.35.

In this example, the dependent source (center, a CCVS) does not interact with the 
sub-circuit on the left driven by the independent source E. Thus it can be analyzed as
two separate circuits as shown in Figure 6.36. 

Solutions for this form are relatively straightforward. The control value for the 
dependent source can be computed directly using standard techniques. Then this 
value is substituted into the dependent source and the analysis continues as normal. 
Sometimes it is convenient if the solution for a particular voltage or current is 
defined in terms of the control parameter rather than as a specific value (e.g., the 
current through a particular component might be 75 i1 instead of just 1 milliamp). 

The second type of circuit (coupled) is somewhat more complex in that the 
dependent source can affect the parameter that controls the dependent source. An 
example is shown in Figure 6.37. 
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Figure 6.35
Dependent source circuit: 
isolated.

Figure 6.36
Dependent source circuit: 
isolated treated as two circuits.



In this example it should be obvious that the voltage from the dependent source can 
affect the voltage at node a, and it is this very voltage that defines ix, which in turn 
sets up the value of the dependent source. As far as analysis is concerned, either 
mesh or nodal can be used. The dependent source(s) will contribute terms that 
include the controlling parameter(s) so some additional effort will be required. To 
illustrate the technique, consider the circuit of Figure 6.38. We shall use the general 
method of nodal analysis.

We begin by defining current directions. Assume that the currents through R1 and C
are flowing into node a, the current through R2 is flowing out of node a, and the
current through L is flowing out of node b. We shall number the branch currents to
reflect the associated components, from left to right. The resulting KCL

equations are:

Σ i in = Σ iout

 
Node a : i1 +i3 = i2

Nodeb : k va = i3 + i4

The currents are then described by their Ohm's law equivalents:

Node a : 
E−v a

R1

+
v b−va

− jX C

=
va

R2

Node b : k v a =
v b−va

R2

+
vb

jX L

Expanding terms yields:

Node a : 
E
R1

−
va

R1

+
vb

− jX C

−
va

− jX C

=
v a

R2

Nodeb : k va =
vb

R2

−
va

R2

+
v b

jX L
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Figure 6.37
Dependent source circuit: 
coupled.

Figure 6.38
Circuit with a voltage-
controlled current source.



Collecting terms and simplifying yields:

Node a : E
R1

= ( 1
R1

+
1
R2

+
1

− jX C
)va −

1
− jX C

vb

Nodeb :   0 =−(k +
1
R2
)va +( 1

R2

+
1

jX L
)vb

At this point, the component values and independent source value would be inserted 
into the equations and the system solved.

Finally, referring back to the prior chapter, it is possible to perform source 
conversions on dependent sources, within limits. The new source will remain a 
dependent source (e.g., VCVS to VCCS). This process is not applicable if the control 
parameter directly involves the internal impedance (i.e., is its voltage or current).

Example 6.11

For the circuit shown in Figure 6.39, determine vc if the source is 10° volt 
peak.

This is an example of the isolated or uncoupled dependent source. The value
of the dependent current source is 30 times the value of the current labeled 
ix, which is the current flowing through the −j2 kΩ capacitive reactance. We 
can find this current first and then determine the resulting value of the 
dependent source. The analysis will require nothing beyond basic series-
parallel techniques. We will number the components from left to right.

The current ix is found via Ohm's law:
 

ix =
E

− jX C1

ix =
1 0° V
− j 2 kΩ

ix = 0.5E-3 90 ° A
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Figure 6.39
Circuit for Example 6.11.



The dependent source is 30 times this value, or 15E−390° amps. Given the
reference direction of this source, the current is flowing upwards through the
65 kΩ resistor and parallel −j50 kΩ capacitor. This establishes vc as 
negative. Multiplying ix by the parallel impedance yields the desired voltage.

Z RC =
R3× jX C2

R3 − jX C2

Z RC =
65k Ω×(− j50 k Ω)

65 kΩ− j 50 k Ω
Z RC = 39.6E3 −52.4 °Ω

v c =−ix×Z RC

v c =−15E-3 90°Ω×39.6E3 −52.4°Ω

v c = 594−142.4 ° V

 The next example features a coupled configuration solved using nodal analysis.

Example 6.12

In the circuit of Figure 6.40, determine va. E =200° volts peak at 50 kHz.

In this circuit we have a current controlled voltage source, or CCVS. The 
proper unit for the constant of 1000 is ohms (volts over amps). First, we 
need to determine the reactance value for the inductor. 

X L = 2π f L
X L = 2π50 kHz 4mH
X L = j 1257Ω

There is only one node of interest here (a) so we will only need one KCL 
equation. The sole unknown is va. Let's assume that the reference directions 
of the currents flowing through the 1 kΩ and 3 kΩ resistors are entering 
node a. We'll call these i1 and i2, respectively. The exiting current is ix.
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Figure 6.40
Circuit for Example 6.12.



The KCL summation is:

Σ iin = Σ iout

i1+i2 = i x

This is expanded using Ohm's law (in several steps, for clarity).

ix = i1+i2

va

R2

=
E −va

R1+jX L

+
1000(Ω)ix−va

R3

va

2 kΩ
=

20 0° V−v a

1k+ j 1257Ω
+

1000 (Ω)ix−v a

3k Ω

20 0° V
1 k+j 1257Ω

=
va

1k+ j 1257Ω
+

va

2k Ω
+

v a

3k Ω
−

1000 (Ω)ix

3k Ω

12.45−51.5° A =
va

1k+ j 1257Ω
+

va

2 kΩ
+

va

3k Ω
−

1000(Ω) va

2k Ω×3k Ω

12.45−51.5° A =
v a

1k+j 1257Ω
+

va

2k Ω
+

va

3kΩ
−

va

6k Ω

12.45−51.5° A =( 1
1 k+ j1257Ω

+
1

2 kΩ
+

1
3k Ω

−
1

6 kΩ)v a

12.45−51.5° A = 1.161E-3−24.8° S va

 
v a = 10.7−26.7° V

Computer SimulationComputer Simulation

For verification, the dependent source circuit of Example 6.12 is entered into a 
simulator as shown in Figure 6.41. The results are shown in Figure 6.42. 
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Figure 6.41
Circuit of Figure 6.40 in a 
simulator.



Note the connection to sense the current ix. It is inserted just like an ammeter. As 
mentioned previously, the constant for the dependent source is a transresistance and 
has units of ohms. A transient analysis is run the circuit, plotting the independent 
source, E, as node 1 (blue), and va as node 3 (red). Both the amplitude and lagging 
phase shift line up nicely with the computed result. The voltage of the dependent 
source is also plotted as node 5 (green). Verifying this potential is left as an exercise.

6.5 Summary6.5 Summary

Nodal analysis can be used to solve virtually any complex multi-source AC electrical
circuit. It is based on KCL, writing expressions involving each node in the circuit. A 
system of equations results, there being as many equations as there are nodes in the 
circuit, minus the reference node (typically taken as ground). The set of equations 
will exhibit diagonal symmetry, which can be used as a crosscheck before setting out
to solve them. The solution will be a complete set of node voltages. From these, any 
branch current may be determined as needed. 

There are two different methods of creating the system of equations. The first 
method is deemed the general method and will work for a mix of current sources and
voltage sources. Individual currents are defined based on the node voltages and any 
known current sources. KCL is then applied at each node, followed by simplification 
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Figure 6.42
Transient analysis for the 
circuit of Figure 6.41.



and combination of terms to arrive at the end equations. The second approach is 
referred to as the inspection method. If the circuit contains only current sources (or if
the voltage sources are converted to equivalent current sources), this method allows 
direct generation of the system of equations without the need for simplification and 
thus is less prone to error. 

Mesh analysis can be used to solve any planar complex multi-source AC electrical 
circuit. In some respects it is the mirror of nodal analysis. It is based on KVL, 
writing expressions involving each closed loop in the circuit. The loops are 
minimally sized and the set of loops must cover every component in the circuit. A 
system of equations results, there being as many equations as there are loops. As 
with nodal analysis, the set of equations will exhibit diagonal symmetry. The 
solution will be a complete set of mesh currents. From these, any branch current and 
node voltage may be determined. 

Like nodal, mesh offers two different methods of creating the system of equations. 
The general method will work for a mix of current sources and voltage sources. 
Individual loops are defined based on the meshing currents passing through each 
component. KVL is then applied around each loop, followed by simplification and 
combination of terms to arrive at the end equations. In contrast, if the circuit 
contains only voltage sources (or if the current sources are converted), then the 
inspection method may be used. This method allows direct generation of the system 
of equations and is faster and less error prone. 

Dependent sources are current or voltage sources whose value depends on the 
current or voltage developed in some other part of the circuit. There are four types: 
current controlled current source (CCCS), current controlled voltage source (CCVS), 
voltage controlled current source (VCCS) and voltage controlled voltage source 
(VCVS). These sources are used commonly to model the characteristics of active 
devices such bipolar and field effect transistors. Techniques for solution tend to be a 
bit more involved than when using constant sources, however, nodal analysis in 
particular tends to work well.

Review QuestionsReview Questions

1. Describe the practical differences between nodal analysis and mesh analysis.
2. What is diagonal symmetry? Of what use is it?
3. What are the differences between the general method and the inspection 

method of nodal analysis?
4. What are the differences between the general method and the inspection 

method of mesh analysis?
5. What is a supernode?
6. What is a supermesh?
7. Describe the concept of dependent sources and how they differ from 

independent or constant sources. 
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6.6 Exercises6.6 Exercises

Analysis Analysis ((All source values are in amps or volts unless specified otherwise)

1. Given the circuit in Figure 6.43, use nodal analysis to determine vc.               
I1 = 30°, I2 = 0.90°.

2. Use nodal analysis to find the current through the 120 Ω resistor in the 
circuit of Figure 6.44. I1 = 0.590°, I2 = 1.60°.

3. Use nodal analysis to find the current through the 43 Ω resistor in the circuit
of Figure 6.44. The sources are in phase.

4. Given the circuit in Figure 6.44, use nodal analysis to determine vb. The 
sources are in phase.

5. Given the circuit in Figure 6.45, determine vc. I1 = 30°, I2 = 20°.
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Figure 6.45
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6. Use nodal analysis to find the current through the j45 Ω inductor in the 
circuit of Figure 6.45. I1 = 20°, I2 = 1.560°.

7. Use nodal analysis to find the current through the 4 Ω resistor in the circuit 
of Figure 6.46. I1 = 145°, I2 = 245°.

8. Given the circuit in Figure 6.46, use nodal analysis to determine vc.               
I1 = 630°, I2 = 40°.

9. Given the circuit in Figure 6.47, use nodal analysis to determine vac.              
I1 = 100°, I2 = 60°.

10. Use nodal analysis to find the current through the j8 Ω inductor in the circuit
of Figure 6.47. I1 = 30°, I2 = 530°.

11. Use nodal analysis to find the current through the 22 Ω resistor in the circuit
of Figure 6.48. I1 = 800E−30°, I2 = 2.50°, I3 = 220°.
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12. Given the circuit in Figure 6.48, use nodal analysis to determine vc.               
I1 = 490°, I2 = 10120°, I3 = 50°.

13. Given the circuit in Figure 6.49, use nodal analysis to determine vc.               
I1 = 3E−30°, I2 = 10E−30°, I3 = 2E−30°.

14. Use nodal analysis to find the current through the −j2 kΩ capacitor in the 
circuit of Figure 6.49.  I1 = 1E−30°, I2 = 5E−30°, I3 = 6E−3−90°.

15. Use nodal analysis to find the current through the 3.3 kΩ resistor in the 
circuit of Figure 6.50. E = 360°, I = 4E−3−120°. 

16. Given the circuit in Figure 6.50, write the node equations and determine vc.  
E = 180°, I = 7.5E−3−30°.

17. Given the circuit in Figure 6.51, use nodal analysis to determine vc.               
E = 40180°, I = 20E−30°.

244

Figure 6.49

Figure 6.50

Figure 6.51



18. Use nodal analysis to find the current through the 2.2 kΩ resistor in      
Figure 6.51. E = 2400°, I = 100E−30°.

19. Use nodal analysis to find vbc in the circuit of Figure 6.52. 

20. Use nodal analysis to find the current through the 2.7 kΩ resistor in the 
circuit of Figure 6.53. 

21. Given the circuit in Figure 6.54, use nodal analysis to determine vba.              
E1 = 10°, E2 = 20°.
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22. Given the circuit in Figure 6.55, use nodal analysis to determine vad.              
E1 = 90°, E2 = 540°.

23. Use nodal analysis to find vcb in the circuit of Figure 6.56. E1 = 10−180°,   
E2 = 250°.

24. Given the circuit in Figure 6.57, use nodal analysis to determine vbc.              
E = 200°,  R1 = 10 kΩ, R2 = 30 kΩ, R3 = 1 kΩ, XC = −j15 kΩ,                      
XL = j20 kΩ.  
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25. Given the circuit in Figure 6.58, write the mesh loop equations and 
determine vb. 

26. Use mesh analysis to find the current through the 2.7 kΩ resistor in the 
circuit of Figure 6.58. 

27. Use mesh analysis to find the current through the 75 Ω resistor in the circuit 
of Figure 6.52. 

28. Given the circuit in Figure 6.52, write the mesh loop equations and 
determine vc.

29. Given the circuit in Figure 6.53, write the mesh loop equations and 
determine vb.

30. Use mesh analysis to find the current through the 1.8 kΩ resistor in the 
circuit of Figure 6.53. 

31. Use mesh analysis to find the current through the j200 Ω inductor in      
Figure 6.54. E1 = 10°, E2 = 20°.

32. Given the circuit in Figure 6.54, write the mesh loop equations and 
determine vb. Consider using parallel simplification first. E1 = 36−90°,      
E2 = 24−90°.

33. Given the circuit in Figure 6.55, use mesh analysis to determine vcd.              
E1 = 0.10°, E2 = 0.50°.

34. Use mesh analysis to find the current through the 600 Ω resistor in the 
circuit of Figure 6.55. E1 = 90°, E2 = 540°.
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35. Use mesh analysis to find the current through the −j200 Ω capacitor in the 
circuit of Figure 6.59. E1 = 180°, E2 = 1290°.

36. Given the circuit in Figure 6.59, use mesh analysis to determine vac.              
E1 = 10°, E2 = 500E−30°.

37. Given the circuit in Figure 6.56, use mesh analysis to determine vc.                
E1 = 10−180°, E2 = 250°.

38. Use mesh analysis to find the current through the 22 kΩ resistor in the 
circuit of Figure 6.56. E1 = 240°, E2 = 360°.

39. Use mesh analysis to find the current through the j300 Ω inductor in    
Figure 6.60. E1 = 10°,  E2 = 1090°.

40. Given the circuit in Figure 6.60, use mesh analysis to determine va.               
E1 = 1000°, E2 = 900°.

41. Given the circuit in Figure 6.57, use mesh analysis to determine vbc.              
E = 100°,  R1 = 1 kΩ, R2 = 2 kΩ, R3 = 3 kΩ, XC = −j4 kΩ, XL = j8 kΩ.

42. Use mesh analysis to find the current through resistor R3 in the circuit of 
Figure 6.57. E = 200°,  R1 = 10 kΩ, R2 = 30 kΩ, R3 = 1 kΩ, XC = −j15 kΩ, 
XL = j20 kΩ.
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43. Use mesh analysis to find the current through resistor R3 in Figure 6.61.       
E = 600°,  R1 = 1 kΩ, R2 = 2 kΩ, R3 = 3 kΩ, XC = −j10 kΩ, XL = j20 kΩ.

44. Given the circuit in Figure 6.61, use mesh analysis to determine vbc.             
E = 12090°,  R1 = 100 kΩ, R2 = 20 kΩ, R3 = 10 kΩ, XC = −j5 kΩ,              
XL = j20 kΩ.

45. Given the circuit in Figure 6.62, use mesh analysis to determine vb. Consider
using source conversion. E = 120°, I = 10E−30°.

46. Use mesh analysis to find the current through the 3 Ω resistor in the circuit 
in Figure 6.62. Consider using source conversion. E = 1590°,                      
I = 10E−30°.

47. Use mesh analysis to find the current through the 2.2 kΩ resistor in the 
circuit in Figure 6.63. E = 3.30°, I = 2.1E−30°.

48. Given the circuit in Figure 6.63, use mesh analysis to determine vb.              
E = 100°, I = 30E−390°.
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49. Given the circuit in Figure 6.64, use nodal analysis to determine vab. 

50. Use nodal analysis to find the current through the 100 mH inductor in the 
circuit of Figure 6.64.

51. Use nodal analysis to find the current through the 330 Ω resistor in the 
circuit of Figure 6.65.

52. Given the circuit in Figure 6.65, write the node equations and determine vb. 

53. Given the circuit in Figure 6.61, use nodal analysis to determine vbc.              
E = 1200°,  R1 = 1 kΩ,  R2 = 2 kΩ, R3 = 3 kΩ, XC = −j10 kΩ,                    
XL = j20 kΩ.

54. Determine the current through the 10 kΩ resistor in the circuit of                
Figure 6.66 if I1 = 10E−3−90°.

55. Determine vb in the circuit of Figure 6.66 if the source I1 = 20E−30°. 

250

Figure 6.64

Figure 6.65

Figure 6.66



56. Determine vc in the circuit of Figure 6.67 if the source E = 3120°.

57. Determine the current through the 5 kΩ resistor in the circuit of Figure 6.67 
if E = 100°.

58. In the circuit of Figure 6.68, determine the capacitor current if the source      
E = 120°.

59. In the circuit of Figure 6.68, determine vc if the source E = 890°.

60. In the circuit of Figure 6.69, determine vb if the source E = 12−90°.

61. In the circuit of Figure 6.69, determine the current flowing into the 1 kΩ 
resistor if the source E = 60°.
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62. In the circuit of Figure 6.70, determine the current flowing into the 600 Ω 
resistor if I1 = 1E−3180°. 

63. Determine va and vb in the circuit of Figure 6.70 if the source I1 = 2E−30°.

64. Determine va in the circuit of Figure 6.71 if the source E = 20°.

65. Given the circuit in Figure 6.71, determine the current flowing through the  
1 kΩ resistor. Assume that  E = 1545°.

66. Given the circuit in Figure 6.72, determine the current flowing through the  
3 kΩ resistor if the source  E = 2533°.

67. Given the circuit in Figure 6.72, determine vab. Assume the source                 
E = 15−112°.
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68. In the circuit of Figure 6.73, determine vd.

69. Given the circuit in Figure 6.73, determine the current flowing through the   
1 kΩ resistor.

70. Given the circuit in Figure 6.74, determine the current flowing through the 
100 Ω resistor.

71. Determine vd in the circuit of Figure 6.74.

72. Determine vab in the circuit of Figure 6.75. E = 100°
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ChallengeChallenge

73. Given the circuit in Figure 6.76, write the node equations. E1 = 500°,         
E2 = 35120°, I = 500E−390°. 

74. Given the circuit in Figure 6.76, use either mesh or nodal analysis to 
determine ved. E1 = 90°, E2 = 120°, I = 50E−30°. 

75. Given the circuit in Figure 6.77, use mesh analysis to determine vfc.               
E1 = 120°, E2 = 480°, E3 = 3670°.
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76. Find voltage vbc in the circuit of Figure 6.78 using either mesh or nodal 
analysis. E = 1000°, R1 = R2 = 2 kΩ, R3 = 3 kΩ, R4 = 10 kΩ, R5 = 5 kΩ,  
XC1 = XC2 = −j2 kΩ.

77. Given the circuit in Figure 6.79, use nodal analysis to find vac.                       
I1 = 8E−30°, I2 = 12E−30°, E = 500°.
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78. Given the circuit in Figure 6.80, use nodal analysis to determine vad.              
I1 = 0.10°, I2 = 0.20°, I3 = 0.30°.

79. Given the circuit in Figure 6.81, determine vad. E1 = 150°, E2 = 60°,         
I = 100E−30°. 

80. Given the circuit in Figure 6.82, determine vad. E1 = 220°, E2 = −100°,    
I = 2E−30°.
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81. Given the circuit in Figure 6.83, determine vab. I1 = 1.20°, I2 = 2120°,    
E = 750°.

82. Given the circuit in Figure 6.84, determine vad. I1 = 0.80°, I2 = 0.2180°, 
I3 = 0.10°, E = 150°.

SimulationSimulation

83. Perform a transient analysis simulation on the circuit of problem 25      
(Figure 6.58) to verify the results for vb.

84. Investigate the variation of vb due to frequency in problem 25 (Figure 6.58) 
by performing an AC simulation. Run the simulation from 10 Hz up to     
100 kHz.

85. Investigate the variation of vb due to component tolerance in problem 25 
(Figure 6.58) by performing a Monte Carlo simulation. Apply a 10% 
tolerance to the resistors and capacitor. 

86. Perform a transient analysis simulation on the circuit of problem 28    
(Figure 6.52) to verify the results for vc.
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87. Investigate the variation of vb due to frequency in problem 28 (Figure 6.52) 
by performing an AC simulation. Run the simulation from 1 Hz up to         
10 kHz.

88. Investigate the variation of vb due to component tolerance in problem 28 
(Figure 6.52) by performing a Monte Carlo simulation. Apply a 10% 
tolerance to the resistors and capacitors. 
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NotesNotes

♫♫♫♫
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7 7 AC PowerAC Power

After completing this chapter, you should be able to: 

• Describe current, voltage and power relationships in AC RLC networks.
• Plot and make use of the power triangle to determine real, apparent and reactive power components in 

an AC power system.
• Compute the power factor of an RLC network. 
• Determine necessary components for basic power factor correction. 
• Perform basic power calculations for systems involving power factor and efficiency.

7.1 Introduction7.1 Introduction

This chapter introduces the concept of power and power waveforms in AC systems. This is an important part of 
AC circuit analysis and turns out to have striking differences compared to the DC counterpart. While it remains 
true that power is the product of current and voltage, a naive application of that definition can lead to erroneous 
conclusions for the AC case. In Chapter One, RMS (i.e., root-mean-square) values were defined and explained. 
As a general rule, RMS values are used for power calculations, not peak or peak-to-peak values. Further, while 
complex non-sinusoidal waveshapes are a decided possibility in electronic systems, we shall limit ourselves here
to sinusoids.

One of the tools we shall use is the power triangle. This is a simple trigonometric device designed to illustrate 
the power relations between resistive and reactive components in a complex impedance. One of its parameters is
the power factor, PF. As we shall see, ordinarily we like the power factor to be unity as this implies best use of 
the available current. It turns out that this is not the case in many systems. As a consequence, we shall also 
investigate a simple means of compensating or shifting the power factor back to unity. This is known as power 
factor correction.

As part of our discussion involving power factor, we shall examine typical applications such as motors. Here we
shall consider the power factor of a motor along with its efficiency. The efficiency is defined as the useful output
power relative to the supplied power and is always less than 100%. Finally, we shall consider basic power factor
correction for this application.

One practical item to remember here is that, while the instantaneous power changes over time due to the 
sinusoidal cycling of the voltage and current, what matters to most electrical and electronic devices is the 
production of internal heat. Devices such as resistors, transistors and so forth, have mass, and thus exhibit a 
thermal time constant. That time constant tends to be much longer than the period of the wave. The effect is an 
averaging of the power waveform. In other words, components do not heat up and cool down instantaneously, 
any more than a hot fry pan would drop to room temperature the moment it was removed from its burner. 
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7.2 Power Waveforms7.2 Power Waveforms

Computation of power in AC systems is somewhat more involved than the DC case 
due to the phase between the current and voltage. It has been stated in prior work 
that power dissipation is characteristic of resistors, and that ideal inductors and 
capacitors do not dissipate power. We shall show precisely why this is the case by 
examining three distinct cases for AC circuits: purely resistive, purely reactive and 
complex impedance. 

Resistive LoadResistive Load

First, consider the case of the purely resistive load, that is, a load with a phase angle 
of 0 degrees. To determine the power, we simply multiply the voltage by the current.
Recall that the basic expression for a sine wave voltage without a DC offset is:

v (t )=V sin (2π f t +θ)

Where 
v(t) is the voltage at some time t,
V is the peak value,
f is the frequency,
θ is the phase shift.

We know that the current and voltage are always in phase for a resistor, and thus θ is
zero degrees. Thus, the expression for a sinusoidal current is similar, using I in place
of V for the peak current. We multiply the current and voltage together to arrive at an
expression for power:11

P (t )=v (t)×i (t )
P (t )=V sin (2π ft )×I sin (2π ft )

P (t )=VI( 1
2

−
1
2

cos (2π2 ft ))
P (t )= VI

2
−

VI
2

cos (2π2 ft ) (7.1)

The final expression is made of two parts; the first portion which is fixed (not a 
function of time) and the second portion which consists of a negative cosine wave at 
twice the original frequency. This can be visualized as a time shifted sine wave that 
is riding on a DC level which is equal to the peak value of the new sinusoid. This is 
shown in Figure 7.1 using current and voltage peaks normalized to unity. In this 
figure, the current waveform (green) is drawn just slightly above its true value so 
that it may be seen easily next to the otherwise identical red voltage waveform. 

11 A useful trigonometric identity here is (sin x)2 = ½ – ½ cos 2x
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The power product is shown in blue. Unless the frequency is ridiculously low, the 
resistor's heating will respond to the average value of this waveform thanks to the 
device's thermal time constant. Due to the fact that sinusoids are symmetrical around
zero, the effective power dissipation averaged over time will be the offset value, or 
VI/2. For example, a one volt peak source delivering a current of one amp peak, as 
shown here, should generate VI/2, or 0.5 watts. This crosschecks nicely with the RMS

calculation of roughly 0.707 volts RMS times 0.707 amps RMS also yielding 0.5 
watts.

Reactive LoadReactive Load

The situation is considerably different if the load is purely reactive. For a load 
consisting of just an inductor, the voltage leads the current by 90 degrees. This is 
equivalent to a cosine wave. Once again, we multiply the voltage by the current to 
arrive at an expression for power:

P (t )=V cos2π ft×I sin 2π ft

P (t )=VI( 1
2

sin 2π 2 ft)
P (t )=

VI
2

sin 2π2 ft (7.2)
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Figure 7.1
Waveforms for a resistive load 
(the current is shifted slightly 
positive to ease viewing).
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Note that this expression does not contain a constant term and only contains a time-
varying term. Consequently, without an offset, there is no net power dissipation. The
result is shown in Figure 7.2. Here power is being alternately generated and 
dissipated (i.e., positive values indicate dissipation while negative values indicate 
generation). In this respect, the reactive element can be thought of as alternately 
storing and releasing energy in the manner of an ideal spring being compressed and 
then released. 

Complex Impedance LoadComplex Impedance Load

Finally, we come to the case of a complex load, part resistive and part reactive. 
Given some phase angle, θ, we have:
 

P (t )=V sin 2π ft×I sin (2π ft+θ)

P (t )=VI( 1
2

cosθ −
1
2

cos (2π 2 ft+θ))
P (t )=

VI
2

cosθ−
VI
2

cos (2π 2 ft+θ) (7.3)

This expression contains both a constant term and a time varying term, like the case 
for the purely resistive load shown in Equation 7.1. There is, however, an important 
distinction. The constant term is multiplied by the cosine of the impedance angle, a 
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Figure 7.2
Waveforms for a purely reactive
load.
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value whose magnitude ranges from 0 up to 1. Therefore, unless θ is zero, the offset 
will not equal the peak value of the sinusoidal portion. This is a particularly 
important point which shall be amplified in a moment. 

Example waveforms using θ = 45° are shown graphically in Figure 7.3. The power 
waveform dips slightly below zero but is not symmetrical around the time axis. 
Consequently, there is some power dissipation but not as much as in the purely 
resistive case. In short,  the long term power average is now a function of the phase 
angle, θ. As cosine θ may range between 0 and 1, the power for the complex 
impedance case will never be more than that of the purely resistive version. Indeed, 
we can see that Equation 7.3 is the general case. If the load is purely resistive then θ 
is zero, and Equation 7.3 reduces to Equation 7.1. Similarly, if the load is purely 
reactive then θ is ±90 degrees, and Equation 7.3 reduces to Equation 7.2.

While this analysis used an inductive load, the same can be said regarding the 
capacitive case (simply swap the labels for the current and voltage waveforms).
Finally, in the equations above, V and I are peak values. If RMS values are used, 
there is no need to divide VI by 2.
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At this point we can see that resistors dissipate true power but that reactive 
components do not. This raises a practical problem, namely, what to call the current-
voltage product for purely reactive or complex loads. That is, we can't lump together
the current-voltage values for an inductor with those of a resistor any more than we 
would simply add the magnitudes of resistance and reactance. The practical solution 
is that we refer to the “power” in reactive components as reactive power. Reactive 
power uses the symbol Q. Further, the units are not watts, but volt-amps reactive, or 
more commonly, VAR12. Continuing, for a complex impedance we refer to apparent 
power. It uses the symbol S and has units of volt-amps, abbreviated VA. It is called 
apparent power because it appears to be the power if you naively multiply the value 
obtained from a voltmeter by the value obtained from an ammeter. Those devices 
would not account for the phase angle between the voltage and current, unlike a 
proper power meter, and their product would not be the true power. The various 
power terms are summarized in Figure 7.4.

Quantity Symbol Unit, Abbreviation

Power P watts, W

Apparent Power S volt-amps, VA

Reactive Power Q volt-amps reactive, VAR

A few examples are in order to help solidify these concepts.

Example 7.1

Determine the power dissipated by the resistor in the circuit of Figure 7.5.
Also find the apparent power drawn by the circuit and the reactive power
of the inductor. The source frequency is 1 kHz.

The first item is to find the reactance of the inductor. 

X L = 2π f L
X L = 2π1 kHz1mH
X L = j 6.283Ω

There are several ways to find power. In a series loop like this, the most 
direct is to use the i2R forms. The source current can be found via Ohm's 
law. As power calculations utilize RMS values, first find the RMS value of 
the source voltage.

12 For the plural form, some sources use “VARs” while others use “VAR”. We shall use the 
latter.
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Figure 7.4
Symbols and units for power 
quantities.

Figure 7.5
Circuit for Example 7.1.



v RMS =
v peak

√2

v RMS =
10V
√2

v RMS ≈7.07V

i =
v
Z

i =
7.07 V

10+j 6.283Ω
i = 0.5986− 32.1° A

For the power calculations, we shall only use the magnitudes of the voltage 
and current. Here, the symbol “| |” refers to just the magnitude of the 
reactance or impedance.

P = i2 R
P =(0.5986A)2 10Ω
P ≈3.58 W

Q = i2 | X |
Q =(0.5986 A)2 6.283Ω
Q ≈2.25 VAR, inductive

S = i2 | Z |
S =(0.5986 A)2 |10+j 6.283Ω |
S ≈4.23 VA, inductive

Computer SimulationComputer Simulation

The circuit of Figure 7.5 is captured in a simulator as shown in Figure 7.6. Three 
different transient analysis simulations are run.
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Figure 7.6
The circuit of Figure 7.5 in a 
simulator.



 The first simulation plots the circulating current (green), the resistor voltage (red) 
and their product (the power, in blue). This is shown in Figure 7.7. We can see that 
current and voltage are perfectly in phase, as expected. Also, the power waveform 
ranges from zero up to about 7 watts. The average of this is approximately half of 
the peak-to-peak, or about 3.5 watts, just as calculated.

The power value can also be computed from voltage times current as a crosscheck. 
The voltage across the resistor can be found via the voltage rule, and its magnitude 
is approximately 5.986 volts RMS. Multiplying this by the RMS current will also 
yield 3.58 watts.

It is instructive to compare these curves to those generated in Figure 7.1 for the 
general resistive case. The current and voltage values in Figure 7.1 were normalized 
to unity so they do not appear to be identical to those of Figure 7.7, however, the 
important part is that the phase relationships are the same along with the position of 
the power waveform. In both cases the power waveform ranges from a minimum of 
zero up to some maximum value. Consequently, its average value must be half of its 
peak-to-peak value. 
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Figure 7.7
Transient analysis for the 
resistor of Figure 7.5.



A second set of plots is generated for the inductor. This is shown in Figure 7.8. 
Again, compare this set against the curves seen in Figure 7.2 for the general reactive 
case. We can see that the current (green) is 90 degrees out of phase with the 
inductor's voltage (red) and lagging, as expected. More importantly, we see that the 
power waveform (blue) is centered around zero. The full cycle average of this is 
zero, meaning that no power is dissipated. But how does this square with the 2.25 
VAR reactive power that was calculated for the inductor? A close look at the power 
plot shows that that value corresponds to the maximum value of the reactive power 
waveform (i.e., half of its peak-to-peak value).

Finally, a third set of curves are created for the circuit as a whole. In other words, 
now we're treating the series combination of the inductor and resistor as the load. 
The results are illustrated in Figure 7.9.

The computed impedance phase angle was lagging at 32.1 degrees. We can see this 
same shift between the voltage (red) and current (green) waveforms. The interesting 
bit here is the offset and amplitude of the power waveform (blue). The waveform 
has a peak-to-peak value of about 8.5 VA. Once again, the computed value for 
apparent power, S, works out to one-half of the plotted peak-to-peak value. This will 
be the case for P, Q and S. Further, it turns out that if we find the full cycle average 
of this waveform, those small negative peaks would subtract from the total area and 
reduce the value. The result would be the true power of 3.58 watts. We'll look at this 
more closely following another example.
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Figure 7.8
Transient analysis for the 
inductor of Figure 7.5.



Example 7.2

Determine the power dissipated by the resistor in the circuit of Figure 7.10.
Also find the apparent power drawn by the circuit and the reactive power
of the capacitor. The source frequency is 1 kHz.

The first item is to find the reactance of the capacitor. 

X C =
1

2π f C

X C =
1

2π1kHz 1μ F
X C =− j 15.92Ω

Unlike the the previous example, we shall use the v2/R forms for power as an
alternative. The RMS value of the source voltage is 7.07 volts. First, find vR.

v R = E
R

R − jX C

v R = 7.07V 10Ω
10 − j 15.92Ω

v R = 3.761 57.9° V
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Figure 7.9
Transient analysis for the 
resistor and inductor together 
in Figure 7.5.

Figure 7.10
Circuit for Example 7.2.



The capacitor voltage is found via KVL:

vC = E −vR

vC = 7.07 0° −3.761 57.9 ° V
vC = 5.99−32.1° V

For the powers, we just use the magnitude of the voltage.

P =
v 2

R

P =
(3.761 V)

2

10Ω
P ≈1.414 W

Q =
i2

| X |

Q =
(5.99 V )

2

15.92Ω
Q ≈2.25 VAR, capacitive

S =
E2

| Z |

S =
(7.07 V)

2

| 10 − j15.92Ω|
S ≈2.66 VA, capacitive

Computer SimulationComputer Simulation

In order to verify the results, the circuit of Figure 7.10 is captured in a simulator as 
shown in Figure 7.11. Once again, three different transient analysis simulations are 
run; one each for the resistor, the capacitor, and the pair together.
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Figure 7.11
The circuit of Figure 7.10 in a 
simulator.



In Figure 7.12 we see the results of a transient analysis run on the resistor. We can 
see that the voltage and current are in phase. Also, the power waveform swings from
zero up to around 2.8 watts or so. This corresponds to an average value of just under 
1.5 watts, and this agrees nicely with the computed result. 

Figure 7.13 illustrates the results from a transient analysis run on the capacitor. As 
expected, the current is leading the voltage by 90 degrees. We can also see that the 
power waveform is swinging symmetrically around zero, meaning that there is no 
net power dissipation. The peak value is just under 2.5 VAR, aligning nicely with the
calculated value. 

Finally, in Figure 7.14 we have the results of a transient analysis using both the 
capacitor and the resistor as the load. The current waveform is still leading the 
voltage, but by less than 90 degrees. In fact, it leads by about 2/3rds of a division, 
some 60° or so, which conforms nicely to the expected impedance angle of  −57.9° 
(i.e. from 10 − j15.92 Ω). The power waveform sits slightly below the horizontal 
axis indicating it is neither true power nor reactive power, but a combination. The 
peak-to-peak value is somewhat over 5 units, indicating an apparent power of just 
over 2.5 VA, again, just as expected.
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Figure 7.12
Transient analysis for the 
resistor of Figure 7.11.
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Figure 7.13
Transient analysis for the 
capacitor of Figure 7.11.

Figure 7.14
Transient analysis for the 
resistor and capacitor together 
in Figure 7.11.



7.3 Power Triangle7.3 Power Triangle

The prior section revealed that the phase angle between the current and voltage 
cannot be ignored when computing power. For example, if a 120 volt RMS source 
delivers 2 amps of current, it appears that it delivers 240 watts. This is only true if 
the load is purely resistive. For a complex load, the true power is somewhat less. In 
fact, as we've just seen, if the load is purely reactive, there will be no true load 
power at all. 

Although plotting the current, voltage and power waveforms is instructive, it can be 
somewhat cumbersome. Instead, we use a power triangle as shown in Figure 7.15. 
The horizontal axis represents true power, P, in watts. The vertical axis represents 
reactive power, Q, in VAR. The vector combination of P and Q results in the 
apparent power, S, in VA. Remember, the apparent power is the product of the 
magnitudes of the current and voltage. This is what the power “appears to be” based 
on simple current and voltage measurements from a DMM, versus a proper power 
meter. In the resistive case, there is no reactive power and thus S and P are the same.
Consequently, the S vector collapses onto the P vector. In a purely reactive case, 
there is no true power and S and Q are the same; both vectors identical and vertical. 
For the complex case, S is the vector sum of P and Q. This simple graphic nicely 
encapsulates the relationship between the three vectors. Further, given any two of 
the four parts (three vector magnitudes and θ) and with just a little trigonometry, the 
other two parts may be found. 

For example, knowing the real and reactive powers, the apparent power can be 
found via the Pythagorean theorem. Similarly, if the apparent power and angle are 
known, the real and reactive powers may be found using sine and cosine. 
Remember, apparent power can be found from the product of the RMS voltage and 
current magnitudes for any complex impedance, and θ is the same as the impedance 
angle (i.e., the voltage angle minus the current angle). For your convenience, some 
useful power triangle relationships are listed following.
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Figure 7.15
The power triangle.

Real 
Power

Reactive 
Power

Real Power, P

Reactive Power, Q

Apparent Power, S

θ



S = v RMS×iRMS (7.4)

S = √P2
+Q 2 (7.5)

θ = tan−1 Q
P

    (i.e., the impedance angle) (7.6)

P = S cos θ (7.7)

P = √S
2
−Q

2 (7.8)
Q = S sinθ (7.9)

Q = √S 2
−P2            (7.10)

Power FactorPower Factor

As we are often interested in the true power, it is worth noting that a rearrangement 
of Equation 7.7 shows that the ratio of true power to apparent power is the cosine of 
the impedance angle, P/S  = cos θ. This is known as the power factor and is 
abbreviated PF. Thus, PF = cos θ. Knowing the phase angle and the apparent power, 
true power can be calculated. If PF is positive it is said to be a lagging power factor. 
This is the case for inductive loads where the current is lagging the voltage. In 
contrast, a capacitive load results in a negative or leading PF. Recall that for 
capacitors, current leads the voltage. The sign is only used to indicate leading or 
lagging and will be useful when we examine power factor correction, shortly. For 
example, if a 100 volt RMS source delivers 1 amp for an apparent power of 100 VA 
and the phase angle is −30°, PF is cos(−30°) or 0.866 leading and the true power is  
P = 100 cos(−30°) = 86.6 watts. 

PF =
P
S

= cosθ    (positive is lagging and inductive) (7.11)

We'll illustrate the use of the power triangle and the power factor in the next thrilling
and action-packed example.13

Example 7.3

Find S, P and Q in the circuit of Figure 7.16. E = 120 volts RMS. The
source frequency is 60 Hz. 

The first step is to determine the inductive reactance.

X L = 2π f L
X L = 2π60 Hz 150 mH
X L = j 56.55Ω

13 Hyperbole seems to work for the movie industry, anyway.
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Figure 7.16
Circuit for Example 7.3.



From here we can determine the system impedance which will, in turn, 
allow us to determine the source current. 

Z =
R× jX L

R + jX L

Z =
160Ω×( j 56.55Ω)

160Ω+ j56.55Ω
Z = 53.3 70.5°Ω

isource =
esource

Z

i source =
120 0° V

53.3 70.5°Ω
isource = 2.252− 70.5° A

The apparent power is the product of the magnitudes of circuit voltage and 
current.

S = E×isource

S = 120 V×2.252 A
S = 270.1 VA, inductive

P = S cos θ
P = 270.1 VA cos 70.5°
P = 90 W

Q = S sinθ
Q = 270.1 VA sin 70.5°
Q = 254.7 VAR, inductive

As a crosscheck, the true power can also be determined by squaring the RMS

voltage and then dividing by the 160 Ω resistance. Similarly, dividing the 
squared voltage by XL will generate Q. 

P =
v R

2

R

P =
120 V 2

160Ω
P = 90 W

The power triangle for this circuit is shown in Figure 7.17.
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Figure 7.17
Power triangle for the circuit  
of Figure 7.16.

90 W

254.7 VAR

270.1 VA

70.5°



Power Factor CorrectionPower Factor Correction

One issue with a reactive load is that the current is higher than it needs to be in order
to achieve a certain true load power. This is wasteful and would require larger 
conductors. To alleviate these issues, an opposite reactance can be added to the load 
such that the resulting load is purely resistive. This can be realized by determining 
the original Q value and then adding a sufficient reactance to produce an additional 
Q of the opposite sign resulting in cancellation. From there, it is short step to 
determine the required impedance. Then, knowing the frequency, the required 
capacitance or inductance can then be found using the appropriate reactance 
formula. This is illustrated in the following example.

Example 7.4

Find circuit PF, S, P and Q for Figure 7.18. E = 200° volts peak at a
frequency of 10 kHz. Also find an appropriate component which when
placed from node a to ground brings PF to unity.

The inductive reactance of 1 mH at 10 kHz is j62.83 Ω. This is in parallel
with the 100 Ω resistor, which is then in series with the 20 Ω resistor. 

Z = 20Ω +(100Ω || j 62.83Ω)
Z = 20Ω +(28.3+ j 45Ω)
Z = 66 43°Ω

This time we shall use peak values to illustrate the difference compared to 
using RMS values as in the previous example. The source current is:

isource =
E
Z

isource =
20 0° V
66 43°Ω

isource = 0.303 − 43° A peak

To find S, multiply the magnitudes of source voltage and current. As these 
are peak values, multiply each by 0.707 to arrive at RMS, or just cut the 
answer in half (i.e., 0.7072 is 0.5). This is the apparent power of the whole 
circuit.

S =
E×isource

2

S =
20 V×0.303 A

2
S = 3.03 VA, inductive
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Figure 7.18
Circuit for Example 7.4.



P = S cos θ
P = 3.03VA cos43°
P = 2.22 W

To be clear, 2.22 watts is the combined power dissipation between the two 
resistors.

Q = S sinθ
Q = 3.03 VA sin 43 °
Q = 2.07 VAR, inductive

The power triangle for this circuit is shown in Figure 7.19. 

For the second part involving power factor correction, we need to add a 
reactive power equal in magnitude to the existing value but of the opposite 
sign. This means we need to add 2.07 VAR capacitive. The new power 
triangle is shown in Figure 7.20. The vertical components cancel, resulting
in the apparent power equaling the true power with PF = 1.

We can place the correction capacitor where it's convenient in physical
terms, just as long as we add 2.07 VAR capacitive. We don't have a physical
circuit, so that's not a consideration here. A convenient location would be to
place it across the existing resistor-inductor combo. Our goal then is to first 
find the required reactance, and from that, determined the required 
capacitance. We shall do this two different ways. In the first case, we note 
that the capacitor appears across the only other reactive element in the 
circuit. Therefore, in order for them to cancel they must have the same 
reactance magnitude, and thus XC must equal −j62.8 Ω. But what if there 
were multiple reactive elements in the circuit or if it was impractical to 
locate the component there, for example, due to space restrictions? In that 
case, we would simply work the power relation backwards. For comparison, 
suppose we place the capacitor in the same location; from node a to ground. 
A voltage divider can be used to determine the present value of va. This 
works out to 11.4 volts RMS. Using the voltage form of the power rule:

Q =
v X

2

X

X =
v X

2

Q

X =
11.4V 2

2.07VAR
X = 62.8Ω

Either way we derive XC, now we just solve the capacitive reactance formula
to find C.
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Figure 7.19
Power triangle for the circuit  
of Figure 7.18.

2.22 W

2.07 VAR

3.03 VA

43 degrees

Figure 7.20
Power triangle for the circuit  
of Figure 7.18 with power 
factor correction.

2.22 W

2.07 VAR 
Inductive

2.07 VAR 
Capacitive

After, S=P

Before



C =
1

2π f X C

C =
1

2π10 kHz62.8Ω
C = 253.3 nF

The resulting circuit is shown in Figure 7.21.

Computer SimulationComputer Simulation

It is useful to see the reduction in current demand caused by using power factor 
correction. To so so, the circuit of Figure 7.21 is captured in a simulator as shown in 
Figure 7.22. 

We will run two transient analyses to find the source current. The first version will 
be run using the original circuit configuration without the capacitor. The second run 
will include the capacitor. To plot the currents, we will make use of Ohm's law. First 
we obtain the voltages at nodes 1 and 2. Then, using the simulator's post processor, 
we subtract v1 from v2 which yields the voltage across the 20 Ω resistor. This 
quantity is then divided by 20 Ω to arrive at the input current. This is similar to the 
current sense resistor technique used in earlier chapters.   

278

Figure 7.21
The circuit of Figure 7.18 with 
power factor correction.

Figure 7.22
The circuit of Figure 7.21 in a 
simulator.



The resulting current for the original circuit is shown in Figure 7.23. Note that the 
peak current is just over 300 milliamps, as calculated in step two of the example.

The second simulation is shown in Figure 7.24, now with power factor correction. 
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Figure 7.23
Simulation results for the 
circuit of Figure 7.22 without 
power factor correction.

Figure 7.24
Simulation results for the 
circuit of Figure 7.22 with 
power factor correction.



The amplitude here is much reduced, in the range of 160 to 170 milliamps peak. By 
adding the capacitor, the two reactive currents cancel, leaving a parallel impedance 
of just 100 Ω. This is in series with the 20 Ω resistor. Dividing 120 Ω into the 20 volt
peak source yields a peak current of approximately 167 mA, in agreement with the 
simulation. The cancellation of the reactive currents is also shown by the fact that 
the source current is no longer out of phase. In Figure 7.24 the current waveform is 
in phase and starts at zero, as expected. This implies a load that is the equivalent of a
pure resistance. In contrast, the plot of Figure 7.23 shows a current that is lagging by
around one-half division, or about 45 degrees, which unsurprisingly is the 
approximate value of the circuit's impedance angle. Obviously then, this combined 
impedance must be inductive.

To sum up, power factor correction is used to lower current demand while keeping 
load power constant. If the load is fixed, this can be achieved through the use of a 
capacitor (for inductive loads) or an inductor (for capacitive loads). If the load 
demand is dynamic, then a more complex system is required, for example, switching
through a bank of capacitors to get a value close to the precise value needed for that 
particular load. More examples of power factor correction are in the next section.

7.4 7.4 Power SystemsPower Systems

In this section we shall change our focus and consider power systems at a more 
functional or abstract level rather than at the component level. Specifically, we 
would like to consider common loads such as motors, heating elements, lighting 
devices and the like, and how to analyze a system consisting of a variety of different 
loads. For the most part, we shall stick with the basic scheme of multiple loads being
supplied by a common and ideally constant voltage source with each load 
configured in parallel with the others. Systems do not have to be configured this way
but it is typical of residential and commercial applications. 

Typical LoadsTypical Loads

Three common loads are heating elements, lighting devices and motors or
compressors. The first two are fairly obvious, but the the latter are also quite
common, although often hidden from view inside devices such as refrigerators, air
conditioners and heat pumps. We can classify loads in terms of their typical
impedance. Devices such as baseboard electrical heating units, toasters, coffee 
makers and electric ovens are classified as resistive heating devices. The load they 
present is easily approximated as a simple resistance. The same is true for 
incandescent lights, however, there can be a very large change in resistance between 
the on and off  states of incandescent lights. Motors, and other devices integrating 
motors such as compressors, present an inductive impedance. This is due to the large
coils of wire, or windings, inside the motor. Any motorized electrical device falls 
into this category, such as a washing machine, drill press or the fan of Figure 7.25.
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Figure 7.25
A small boxer fan for cooling 
electronic components.



Purely capacitive loads are not nearly as common but some everyday devices exhibit
highly complex impedances that can vary widely in both amplitude and angle. A 
standard moving coil dynamic loudspeaker falls into this category. While you would 
never plug a loudspeaker directly into an AC power system14, the amplifier that 
drives it must be designed to meet the challenges of an impedance whose magnitude 
can change by a factor of ten across the audible range of frequencies. To complicate 
matters, while the phase typically is inductive, at some frequencies it can be purely 
resistive or even capacitive. 

Efficiency  Efficiency  

Efficiency is defined as usable power output divided by applied power input and is 
denoted by the Greek letter eta, η. Normally it is expressed as a percentage and it 
can never be over 100%. 

η =
Poutput

P input

(7.12)

Some loads, such as typical heating elements, can be thought of as being 100% 
efficient, meaning that all of the electrical input is turned into useful output (in this 
case that's heat, although there are more effective ways of using that electrical input 
to generate heat, such as a heat pump15). In contrast, incandescent light bulbs turn 
very little of their input into the desired quantity (light) and thus suffer from low 
efficiency. Just a few percent of the electrical energy fed into an incandescent bulb 
turns into light while the vast majority turns into heat. From that perspective, 
incandescent lights are more efficient at producing heat than light. LED lighting, on 
the other hand, is perhaps an order of magnitude more efficient than incandescent 
lighting, meaning that we can get the same light output for a much smaller electrical 
power input while simultaneously producing less heat.

Motors lose power in the form of mechanical losses (e.g., friction) and electrical 
losses (e.g., resistance of windings). Motors are rated in terms of their output power, 
not the power they draw from the source. For example, a motor with a 1 HP rating 
might be said to generate 1 HP (approximately 745.7 W) at the shaft. If the motor is 
90% efficient, the electrical draw would be 745.7 W/0.9 or 829 W. This situation is 
further complicated by the phase angle (i.e., power factor) of the motor due to 
reactive elements, as noted in the previous sections. Compared to motors, home 

14 That is, unless you enjoy hearing a short-lived blast of sound which is followed by a burst
of flames. Plugging a nominal 8 Ω loudspeaker into a 120 VAC outlet would generate 
1800 watts of power, well beyond the design limits of any common loudspeaker. 

15 A heat pump moves heat from one place to another. In a properly designed system it takes
less energy to move heat than it takes to generate it, and thus it's much more effective 
than simple resistive heating when it comes to warming the interior of a building.
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loudspeakers are particularly inefficient, typically converting only about 1% of the 
electrical input into usable acoustic output. 

Example 7.5

A certain 120 VAC RMS 60 Hz 1.2 HP motor has an efficiency of 90% and a 
lagging power factor of 0.85. Determine the apparent power and the current 
drawn from the system. Also draw the power triangle. 1 HP ≈ 745.7 watts.

The motor output is 1.2 horsepower which is equivalent to:

Pwatts ≈1.2 HP×745.7 W/HP
Pwatts ≈895 W

The input required to achieve this is computed with Equation 7.12.

P input =
Poutput

η

P input =
895 W

0.9
P input = 994 W

From Equations 7.10 and 7.11, the remaining powers are:

S =
P

PF

S =
994 W
0.85

S = 1170VA

Q = √S 2
−P2

Q = √(1170VA )2−(994 W)2

Q = 617 VAR

The current is found via Equation 7.4, essentially power law:

S = vRMS ×i RMS

iRMS =
S

v RMS

iRMS =
1170 VA

120 V
iRMS = 9.75 A

The power triangle is shown in Figure 7.26.
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Figure 7.26
Power triangle for the motor 
described in Example 7.5.

994 W

617 VAR 
Inductive

1170 VA



Example 7.6

For the motor described in Example 7.5, determine an appropriate 
component that when placed in parallel will produce unity power factor. 
Draw the complete power triangle for the system and determine the new 
current draw.

In Example 7.5 the reactive power was determined to be 617 VAR and was 
inductive, so we'll need 617 VAR capacitive to compensate. The new power 
triangle is shown in Figure 7.27. The source voltage was stated to be 120 V. 
We can use a variation on power law to determine the required reactance.

Q =
v RMS

2

X C

X C =
vRMS

2

Q

X C =
120 V2

617 VAR
X C =− j 23.34Ω

Now use the capacitive reactance formula to determine the capacitance
value. The line frequency was specified as 60 Hz.

C =
1

2π f X C

C =
1

2π60 Hz 23.34Ω
C = 114μ F

After correction, the apparent power and real power are the same.
Thus,

iRMS =
S

v RMS

iRMS =
994 VA
120 V

iRMS = 8.28A

The current draw has been reduced by nearly 1.5 amps, a considerable 
savings. The new current is 85% of what it used to be. 

Now let's consider a larger system that contains several devices. 
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994 W

617 VAR 
Inductive

617 VAR 
Capacitive

After, S=P

Before

Figure 7.27
Power triangle for the 
corrected system of 
Example 7.6.



Example 7.7

The system shown in Figure 7.28 is supplied by a 240 VAC RMS 60 Hz 
source. Load 1 is 1000 watts of resistive heating elements. Load 2 is a 3 HP 
motor with an efficiency of 92% and a lagging power factor of 0.75. Load 3 
is a capacitor bank equivalent to 75 μF. Draw the system power triangle and 
determine whether or not load 3 is appropriate to bring the system power 
factor to unity. 

First, determine the power triangle for the motor. Then we can add the other 
loads to it to create a system power triangle. The motor output is 3 HP which
is equivalent to:

Pwatts ≈3 HP×745.7 W/HP
Pwatts ≈2237 W

The required input power is.

P input =
Poutput

η

P input =
2237 W

0.92
P input = 2432W

The computations for apparent and reactive power follow.

S =
P

PF

S =
2432 W

0.75
S = 3242VA

Q = √S 2
−P2

Q = √(3242VA )2−(2432 W)2

Q = 2144 VAR, inductive

The power triangle for the motor is shown in Figure 7.29.
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Figure 7.29
Power triangle for the motor 
of Example 7.7.

2432 W

2144 VAR 
Inductive

3242 VA

Figure 7.28
System block diagram for 
Example 7.7.



Now for the capacitor. First, we need to determine the reactance, then we 
can use the v2/Z form of power law to determine Q.

X C =
1

2π f C

X C =
1

2 π60 Hz 75μ F
X C =− j 35.37Ω

Q =
v2

X

Q =
(240 V)

2

35.37Ω
Q = 1629 VAR, capacitive

There are no other reactive elements in the system to consider. We have 515 
fewer capacitive VAR than inductive VAR, so the correction will not be ideal.
We would need to increase the total capacitance by about 24 μF to achieve a 
power factor of unity. The system power diagram with all of the individual 
parts is shown in Figure 7.30. This is then simplified to the final system 
power triangle as shown in Figure 7.31. The system PF is 0.989 lagging.
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2432 W

2144 VAR 
Inductive

1629 VAR 
Capacitive

1000 W

Figure 7.30
Power components for the 
system of Example 7.7.

Figure 7.31
Final power triangle for the 
system of Example 7.7.

3432 W

515 VAR 
Inductive

3470 VA



7.5 Summary7.5 Summary

Power is the product of current and voltage, however, the phase relationship between
the two has a major impact on the result. The most simple and straightforward case 
is when the current and voltage are in phase, meaning the load is a pure resistance. 
In this case, the true power can be computed directly as the product of RMS current 
and voltage. At the other extreme, when the voltage and current are 90 degrees out 
of phase, as in the case of a purely capacitive or inductive load, power is alternately 
generated and dissipated. That is, in a reactive load, true power dissipation is zero. A
mechanical analogy is the storage and release of energy in an ideal spring as it is 
alternately compressed and then allowed to expand. In between these two extremes, 
that is, when the load is a complex impedance, the true power dissipation is 
somewhere between zero and the resistive maximum.

The power triangle is used to make visual sense of this situation. It is a right triangle 
comprised of three legs. The horizontal leg represents the true, or resistive, power 
and is denoted by the letter P. It is measured in watts. The vertical leg represents the 
so-called “reactive power”. It is denoted by the letter Q and has units of VAR (volt-
amps-reactive). Q can be either inductive or capacitive. The third leg, the 
hypotenuse, is the apparent power, S. It is measured in VA (volt-amps). It is called 
apparent power because that is what the power appears to be if it is naively 
measured with a voltmeter and an ammeter, ignoring the phase difference between 
them. The angle between the real and apparent powers, θ (theta), is the phase angle 
between the voltage and current. In other words, theta is the impedance angle. 
Knowing theta, real power can be determined using right angle trigonometry, 
namely, P = S cos θ. The cosine of theta is also know as the power factor, PF. It 
ranges from 0 (purely reactive) to 1 (purely resistive). Positive or inductive 
impedance angles are said to have lagging power factor while negative or capacitive 
impedance angles produce leading power factor. 

Ideally, loads are purely resistive and have a power factor of unity. If this is not the 
case, then for a given voltage, a higher current is needed to create the same real 
power as in the purely resistive case. This is not advantageous. Power factor 
correction is the process of shifting the power factor back to unity for complex 
loads. This is done by inserting a reactance of the opposite sign to counterbalance 
the reactive portion of the load, for example, adding capacitive reactance to a system
that is inductive. The added reactive power must have the same magnitude as the 
original reactive power but be of the opposite sign, resulting in cancellation.

Efficiency is the measure of usable output power to applied power. Ideally, 
electromechanical systems such as motors would be 100% efficient, meaning that 
there is no power loss, but this is not a practical possibility. For example, there will 
always be frictional losses and power losses in wires. 
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Review QuestionsReview Questions

1. Define apparent power, real power and reactive power.
2. Describe the power triangle.
3. What is power factor, PF? 
4. Describe the difference between leading and lagging power factor.
5. What is power factor correction? 
6. Give examples of resistive loads and inductive loads.

7.6 Exercises7.6 Exercises

AnalysisAnalysis

1. For the circuit shown in Figure 7.32, determine apparent power S, real 
power P, reactive power Q and power factor PF. Also, draw the power 
triangle.

2. For the circuit shown in Figure 7.33, determine apparent power S, real 
power P, reactive power Q and power factor PF. Also, draw the power 
triangle.
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Figure 7.32

Figure 7.33



3. For the circuit shown in Figure 7.34, determine apparent power S, real 
power P, reactive power Q and power factor PF. Also, draw the power 
triangle. The source is 120 volts.

4. For the circuit shown in Figure 7.35, determine apparent power S, real 
power P, reactive power Q and power factor PF. Also, draw the power 
triangle. The source is 120 volts.

5. For the circuit shown in Figure 7.36, determine apparent power S, real 
power P, reactive power Q and power factor PF. The source is 90 volts,      
XL = j30 Ω, R = 50 Ω.
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Figure 7.34

Figure 7.35

Figure 7.36



6. For the circuit shown in Figure 7.37, determine apparent power S, real 
power P, reactive power Q and power factor PF. Also, draw the power 
triangle. The source is 240 volts, XC = −j200 Ω, R = 75 Ω.

7. For the circuit shown in Figure 7.38, determine apparent power S, real 
power P, reactive power Q and power factor PF. The source is 120 volts,       
XL = j40 Ω, XC = −j25 Ω, R = 20 Ω.

8. For the circuit shown in Figure 7.38, determine apparent power S, real 
power P, reactive power Q and power factor PF. The source is 120 volts,    
60 Hz. R = 80 Ω, C = 20 μF, L = 400 mH.

9. An audio power amplifier delivers a 30 volt RMS 1 kHz sine to a 
loudspeaker. If the loudspeaker impedance at this frequency is 745°, 
determine the RMS current delivered to the load and the true power.

10. An audio power amplifier delivers an 80 volt peak 35 Hz sine to a 
subwoofer. If the subwoofer impedance at this frequency is 4−30°, 
determine the peak current delivered to the load and the true power.

11. A certain load is specified as drawing 8 kVA with a lagging power factor of 
0.8. Determine the real power P, and the reactive power Q. Further, if the 
source is 120 volts at 60 Hz, determine the effective impedance of the load 
in both polar and rectangular form, and the requisite 
resistance/inductance/capacitance values.

12. A certain load is specified as drawing 20 kVA with a leading power factor of 
0.9. Determine the real power P, the reactive power Q and draw the power 
triangle. If the source is 240 volts at 60 Hz, determine the effective 
impedance of the load in both polar and rectangular form, and the requisite 
resistance/inductance/capacitance values.
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Figure 7.37

Figure 7.38



13. Consider the system shown in Figure 7.39. E is a standard 120 V input. If 
the three loads are 45 W, 60 W and 75 W incandescent light bulbs, 
respectively, determine the apparent power delivered to the system, the 
source current, the reactive power and the real power.

14. Given the system shown in Figure 7.39, determine the apparent power 
delivered to the system, the source current, the real power, the reactive 
power and the efficiency. E is 120 V. The three loads are resistive heating 
elements of 500 W, 1200 W and 1500 W, respectively. 

15. Consider the system shown in Figure 7.40. E is 240 V. If the three loads are 
200 W, 400 W and 1000 W resistive, respectively, determine the apparent 
power delivered to the system, the real power and the reactive power.

16. Given the system shown in Figure 7.40, determine the apparent power 
delivered to the system, the real power, the reactive power and the 
efficiency. E is 480 V. The three loads are resistive heating elements of   
1500 W, 2000 W and 3500 W, respectively. 

17. Consider the system shown in Figure 7.39. E is 120 V. Load 1 is 1 kW 
resistive, load 2 is 400 W resistive and load 3 is 600 VAR inductive. 
Determine the apparent power delivered to the system, the source current, 
the reactive power, the real power and the power factor.

18. Consider the system shown in Figure 7.39. E is 240 V. Load 1 is 2 kW 
resistive, load 2 is 800 W resistive and load 3 is 1200 VAR capacitive. 
Determine the apparent power delivered to the system, the source current, 
the real power, the reactive power and the power factor.

19. Given the system shown in Figure 7.39, determine the apparent power 
delivered to the system, the source current, the real power, the reactive 
power and the power factor. E is 120 V. Load 1 is 600 W of incandescent 
lighting, load 2 is 1200 W of heating elements and load 3 is 200 VAR 
capacitive. 
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20. Given the system shown in Figure 7.39, determine the apparent power 
delivered to the system, the source current, the real power, the reactive 
power and the power factor. E is 60 V. Load 1 is 90 W of incandescent 
lighting, load 2 is 800 W of heating elements from a dryer and load 3            
200 VAR inductive.

21. A 120 V 3 HP motor draws a real power of 2500 W from the source. 
Determine its efficiency.

22. A 120 V 12 HP motor draws a real power of 10 kW from the source. 
Determine its efficiency.

23. An ideal 120 V 2 HP motor draws an apparent power of 1800 W from the 
source. Determine its power factor.

24. An ideal 120 V 0.3 HP motor draws an apparent power of 270 W from the 
source. Determine its power factor.

25. A 120 V motor is rated at 0.5 HP. It has an efficiency of 78% and a lagging 
power factor of 0.7. Determine the apparent power drawn from the source 
(S), the real power (P), and the reactive power (Q) supplied. Also draw the 
power triangle and find the delivered current.

26. A motor is rated at 10 HP. It has an efficiency of 92% and a lagging power 
factor of 0.8. Determine the apparent power drawn from the source (S), the 
real power (P), and the reactive power (Q) supplied. Also draw the power 
triangle. Finally, determined the current drawn from the 120 V source.

27. Consider the system shown in Figure 7.39. E is 120 V. Load 1 is 1 kW 
resistive, load 2 is 400 W resistive and load 3 is a 1 HP motor that is 80% 
efficient and has a 0.85 lagging power factor. For the system, determine the 
apparent power delivered, the source current, the real power, the reactive 
power and the power factor.

28. Consider the system shown in Figure 7.39. E is 120 V. Load 1 is 2.5 kW 
resistive, load 2 is 500 VAR capacitive and load 3 is a 2 HP motor that is 
85% efficient and has a 0.9 lagging power factor. For the system, determine 
the total power delivered, the source current, the apparent power, the real 
power and the power factor.

291



29. For the system shown in Figure 7.41, E is 240 V. Load 1 is 1.2 kW resistive 
heating, load 2 is 400 W resistive lighting, load 3 is a 0.5 HP motor that is 
80% efficient with a 0.7 lagging power factor, and load 4 is a 1 HP motor 
that is 85% efficient with a 0.8 lagging power factor. For the system, 
determine the apparent power delivered, the source current, the real power, 
the reactive power and the power factor.

DesignDesign

30.  A 120 V 60 Hz source drives a load equivalent to a 75 Ω resistor in parallel 
with a 25 μF capacitor. Determine the appropriate capacitance or inductance 
value to place across this load to produce unity power factor.

31. A 240 V 60 Hz source drives a load equivalent to a 10 Ω resistor in parallel 
with a 50 mH inductor. Determine the appropriate capacitance or inductance
value to place across this load to produce unity power factor.

32. A load of 5030° is driven by a 120 V 60 Hz source. Determine the 
appropriate capacitance or inductance value to place across this load to 
produce unity power factor.

33. A load of 50−50° is driven by a 240 V 60 Hz source. Determine the 
appropriate capacitance or inductance value to place across this load to 
produce unity power factor.

34. A certain load is specified as drawing 8 kVA with a lagging power factor of 
0.8. The source is 120 volts at 60 Hz. Determine the appropriate capacitor or
inductor to place in parallel with this load to produce unity power factor.

35.  A certain load is specified as drawing 20 kVA with a leading power factor of
0.9. The source is 240 volts at 60 Hz. Determine the appropriate capacitor or
inductor to place in parallel with this load to produce unity power factor.

36. A 240 V 60 Hz source is connected to a load consisting of heating elements 
of 10 kW along with a 15 HP motor with η=90%, PF=0.85. Determine an 
appropriate capacitor or inductor to place in parallel to produce unity power 
factor.

37. A 120 V 60 Hz source is connected to a load consisting of 350 W of resistive
lighting along with a 1.5 HP motor with η=70%, PF=0.75. Determine an 
appropriate component to place in parallel to produce unity power factor.
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ChallengeChallenge

38. A power distribution system for a concert has the following specifications: 
Ten class D audio power amplifiers rated at 2 kW output each with 90% 
efficiency and unity power factor, 10 kW worth of resistive stage lighting to 
illuminate the musicians alongside a troupe of trained dancing kangaroos, a 
3 HP motor used to continuously rotate the drum riser throughout the 
performance (η=80%, PF=0.75) and a 2 HP compressor which inflates and 
deflates a giant rubber T. rex during particularly exciting parts of the show 
(η=85%, PF=0.8). For the system, determine the total power delivered, the 
source current, the apparent power, the real power, and the power factor. 
Finally, make a sketch of this extravaganza with its entertainers in full 
regalia singing their latest tune “Maximum Volume”.

SimulationSimulation

39. Verify the design of problem 28 by performing a transient analysis. The 
design will have been successful if the source current and voltage are in 
phase.

40. Verify the design of problem 29 by performing a transient analysis. The 
design will have been successful if the source current and voltage are in 
phase.
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8 8 RResonanceesonance

8.0 Chapter Learning Objectives8.0 Chapter Learning Objectives

After completing this chapter, you should be able to: 

• Describe series resonance and plot impedance, voltage and current as a function of frequency.
• Describe parallel resonance and plot impedance, voltage and current as a function of frequency.
• Determine system resonant frequency, Q and bandwidth in series and parallel resonant networks.
• Perform series-to-parallel transforms for practical inductors.

8.1 Introduction8.1 Introduction

Resonance can be thought of as a preferred frequency of vibration. In other words, it is a frequency at which a 
system operates with reduced limitation. It is exploited in a variety of areas, for example, a good mechanical 
resonance can be used for the construction of acoustic musical instruments. In this case, we strive to maintain 
the resonant oscillation in order to enhance the instrument's sustain. On the other hand, we might want to control
or limit the resonance, as in an automotive suspension system. In electrical systems, resonance tends to produce 
either a maximum or a minimum response to current or voltage. As a result, resonant systems can be used to 
filter out or select specific frequencies across the spectrum. Obvious uses include tuning circuits, oscillators, 
filters and the like. 

There are two basic forms of resonance for electrical circuits: series RLC resonance and parallel RLC resonance. 
Series resonance tends to be the less complicated of the two. Both types share many similarities but in some 
respects they are mirror images of each other. Series and parallel resonant circuits both exhibit wide fluctuations
in impedance magnitude and phase across the frequency spectrum. In the case of series resonance, the 
impedance is at a minimum at the resonance frequency. This implies a current maximum if the circuit is driven 
by a voltage source. In contrast, parallel resonance produces an impedance peak at resonance. This implies a 
voltage maximum if the circuit is driven by a current source.

Much of the initial circuit analysis in this chapter concentrates on the response of the circuits across a range of 
frequencies rather than at some random specific frequency. Consequently, we will be making considerable use 
of frequency domain plots; that is, plots of impedance, voltage and current magnitude and phase as they vary 
across the frequency spectrum. Once that is established we can zero in on the area of resonance and determine 
precisely the shape of these curves in the region around the resonant frequency. Along the way we will define 
and utilize new circuit parameters such as Q, bandwidth, half-power frequencies and more.16 

16 “Q” as used in this chapter is not to be confused with the Q used to represent reactive power, although it is related to the
Q, or quality factor, of an inductor. 
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8.2 Series Resonance8.2 Series Resonance

Let's begin with the simplest RLC circuit; one consisting of a single voltage source 
in series with a single resistor, inductor and capacitor, as shown in Figure 8.1. Of 
particular interest is how the total impedance varies across the frequency spectrum 
and what impact this has on the current and the three component voltages. 

The impedance as seen by the source is simply the sum of the three components, or

Z = R+ jX L − j X C

This can be expanded into

Z== R+ j 2π f L − j 1
2π f C

The interesting part here is that the first term is not a function of frequency, the 
second term is directly proportional to frequency and the third is inversely 
proportional to frequency. Further, given that the positive and negative reactances 
behave oppositely, it appears that at some frequency they may cancel out, leaving 
just the resistance. 

To refine this, we expect that at low frequencies the capacitor will dominate the 
impedance. In other words, XC will be the largest of the three ohmic values. This 
means that the overall impedance will tend to mimic both the magnitude and phase 
of the capacitive reactance. On the other hand, at very high frequencies the inductor 
will tend to dominate the impedance. XL will be the largest of the three values. In this
region, the combined impedance will echo that of the inductor. In short, at low 
frequencies the impedance magnitude will be large and the circuit will appear 
capacitive while at high frequencies the impedance magnitude will be large and the 
circuit will appear inductive. In the middle is where things get interesting. 

A plot of the resistance or reactance of the three elements is shown in Figure 8.2. 
The sum of the three is also shown (red). The frequency axis is uses a logarithmic 
scale to show the symmetrical nature of the combined impedance curve. 
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Figure 8.1
A series RLC circuit.



The dip in the center corresponds to an impedance equal to R. At this frequency the 
capacitive and inductive reactances are equal in magnitude and effectively cancel 
each other. All that's left is the resistive component, R. This frequency is known as 
the resonant frequency and is denoted by f0.

The series resonant frequency, f0, is the frequency at which the 
magnitudes of the inductive and capacitive reactances are equal.     (8.1)

This implies that the power factor is unity at resonance. Also, in a real world circuit 
R is the combination of the series resistance plus any resistance from the inductor's 
coil. We can derive a formula for f0 as follows. The definition declares that the 
magnitude of XL must equal the magnitude of XC. Therefore, we can set the 
capacitive and inductive reactance formulas equal to each other and then solve for 
the resulting frequency.

      
X C =

1
2π f C

 
X L = 2π f L
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X L = X C

2π f 0 L =
1

2π f 0 C

f 0
2 =

1
(2π)2 LC

        f 0 =
1

2π√L C
(8.2)

Note that a particular resonant frequency can be obtained through a variety of LC 
pairs. This, along with the value of R, will alter the specific shape of the impedance 
curve in terms of how narrow or broad the dip is. These components will also affect 
how quickly the phase response shifts from fully capacitive (−90°) to fully inductive
(+90°). This shape factor is described by the parameter, Q. The tighter or more 
narrow the curve, the higher the Q. 

Given a constant voltage source, it should be no surprise that a plot of the resulting 
current will be an inversion of the impedance curve. This is shown in Figure 8.3.

If we scale the curves such that they both have a normalized peak of unity, the 
difference in the shapes may be a little easier to see. This is shown in Figure 8.4.
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At this point we can more precisely define Q. Specifically, the “sharpness” of the 
curve is related to the half-power or “−3 dB” frequencies, f1 and f2.17 These are the 
frequencies at which the current (assuming voltage source drive) falls off to 0.707 of
the maximum value at resonance. Therefore, they represent the frequencies at which 
power will have fallen to one-half of the maximum value seen at resonance (recall 
that power varies as the square of current and that 0.707 squared is approximately 
0.5). f1 is below f0 and f2 is found above. The difference between these two 
frequencies is called the bandwidth, BW. 

BW = f 2 − f 1 (8.3)

Qcircuit =
f 0

BW
(8.4)

The relationship between these variables is illustrated in Figure 8.5. The vertical axis
is shown as a percentage of maximum. For a series resonant circuit driven by a 
voltage source, this axis is current; however, it can be voltage in the the case of a 
parallel resonant circuit, as we shall see. If this plot is compared to the curves in 
Figure 8.4, it should be apparent that for lower Q circuits, f1 and f2 spread apart, 
moving away from the resonant frequency, f0. Thus, for any given f0, a lower Q 
means a wider (larger) bandwidth.

17 Decibels are covered in detail in Chapter 10.
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The resonant frequency, f0, in general is not located evenly between f1 and f2. It is, in 
fact, located at their geometric mean. In other words,

f 0 = √ f 1 f 2 (8.5)

From Equation 8.5 we may derive:

f 0

f 1

=
f 2

f 0

(8.6)

To find accurate values for f1 and f2 we can define a factor, k0. The derivation of k0 is 
found in Appendix C. 

k 0 =
1

2Q circuit

+√ 1

4Qcircuit
2
+1 (8.7)

f 1 =
f 0

k 0

(8.8)

f 2 = f 0×k 0 (8.9)
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Figure 8.5
Location of f1 and f2, and 
definition of bandwidth (BW).
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For higher Q circuits (Qcircuit ≥ 10), we can approximate symmetry, and thus

f 1 ≈ f 0 −
BW
2

(8.10)

f 2 ≈ f 0+
BW
2

(8.11)

As mentioned previously, the Q can be a function of either R or the L/C ratio. In 
Figures 8.6 and 8.7 we have impedance curves for the two cases. The frequency axis
is normalized to f0 (i.e., f0 is unity). In Figure 8.6 we vary the resistance value to see 
how it affects both the magnitude and phase of the impedance across frequency. 
Figure 8.7 is similar except we vary the inductor/capacitor ratio.

Looking first at the phase (blue, left axis), we see in both cases that high Q circuits 
exhibit a quick transition from a negative (capacitive) phase angle to a positive 
(inductive) phase angle. We also notice that the phase shift hits zero at f0, implying 
unity power factor.

The impedance magnitude plots show a slightly different story. While it is true that 
the higher Q plots are sharper, they get that way through different mechanisms. In 
the case of the resistor, a lower Q is achieved via a larger resistance. This has the 
effect of blunting the tip of the curve and lowering current flow at f0 when compared
to the high Q case (as seen in Figure 8.3). In contrast, reducing Q by reducing the 
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inductor/capacitor ratio broadens the entire curve. The impedance magnitude at the 
dip does not change, and thus the current at f0 does not change. In practical terms, 
the Q for a series circuit, Qseries, may also be defined by the ratio of circuit reactance 
to the total series resistance at resonance.

Qseries =
X 0

RT

(8.12)

Where 
Qseries is the Q of the series resonant circuit (i.e., Qcircuit for series),
RT is the total series resistance (Rseries + Rcoil),
X0 is the reactance (either XL or XC) at f0.

From Equation 8.12 we can derive an expression for Qseries in terms of R, L and C as 
follows:

Q series =
X 0

RT

Qseries =
√X 0

2

RT
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Figure 8.7
Magnitude and phase of 
impedance for a variation of 
inductor/capacitor ratio.

Series Resonance Impedance Variation with Q: L/C Ratio
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At resonance XL and XC have the same magnitude, thus we can also say:

Q series =
√X L X C

RT

 

Qseries =
1
RT

√X L X C

 

Q series =
1
RT √ 2 π f L

2π f C

Which simplifies to:

Qseries =
1
RT √ L

C
(8.13)

Effect of Q on Component VoltagesEffect of Q on Component Voltages

Q will create a multiplying effect on the inductor and capacitor voltages at 
resonance. At f0, the current through the circuit will equal the source voltage divided 
by R because XC and XL cancel. This current is also flowing through the capacitor 
and inductor. Equation 8.12 shows that their reactances are Q times higher than R, 
and therefore their voltages will be Q times higher than the source voltage. KVL is 
not violated because the voltages across L and C are 180 degrees out of phase and 
cancel each other. As the circuit Q is increased, the voltage multiplying effect 
becomes more pronounced. In extreme cases it is possible to produce inductor and 
capacitor voltages that are more than 100 times larger than the source voltage. As we
move away from the resonant frequency, the multiplying effect decreases. At 
frequencies much lower than f0, almost all of the source voltage will appear across 
the capacitor with little for the resistor and inductor. At much higher frequencies, 
nearly all of the source potential appears across the inductor with nothing seen 
across the capacitor or resistor. This can be seen in Figure 8.8, where the source 
voltage is unity.

As Q decreases, not only do the capacitor and inductor voltages decrease, but 
another effect comes into play. At relatively high Q values, say 10 or more, the 
capacitor and inductor maximum voltages occur at approximately f0. At lower Q 
values the peaks tend to spread apart, with the capacitor's peak below f0 and that of 
the inductor above f0. This is illustrated in Figure 8.9 (again, the source is unity).
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Figure 8.8
Series resonance: component 
voltages for high Q.
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Example 8.1

Consider the series circuit of Figure 8.10 with the following parameters:
the source is 10 volts peak, L = 1 mH, C = 1 nF and R = 50 Ω. Find the
resonant frequency, the system Q and bandwidth, and  the half-power 
frequencies f1 and f2.

We begin by finding the resonant frequency.

f 0 =
1

2π√ LC

f 0 =
1

2π√1e-3⋅1e-9
f 0 = 159 kHz

We now find the magnitude of the inductive reactance, and from that, the 
system Qseries via Equation 8.12.

X L = 2π f 0 L
X L = 2π159 kHz 1mH
X L = 1000Ω

Q series =
X L

RT

Qseries =
1000Ω
50Ω

Qseries = 20

Knowing the Q, the bandwidth and corner frequencies can be found via 
Equations 8.4, 8.10 and 8.11.

BW =
f 0

Q

BW =
159 kHz

20
BW = 7.95 kHz

f 1 = f 0 −
BW
2

f 1 = 159 kHz −
7.95kHz

2
f 1 ≈155 kHz
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Figure 8.10
Circuit for Example 8.1.



f 2 = f 0 +
BW
2

f 2 = 159 kHz +
7.95kHz

2
f 2 ≈163 kHz

Given the 10 volt peak source, the voltages across the capacitor and inductor
at the resonance frequency of 159 kHz would be Q times greater, or 200 
volts. At higher or lower frequencies, the increased impedance lowers the 
current and also lowers the voltages across the components. At low 
frequencies, most of the source will appear across the capacitor while at high
frequencies the inductor voltage will approach the source voltage.

  
Refining Series QRefining Series Q

As noted in Chapter 2, all inductors have some series resistance associated with 
them, usually called Rcoil. This resistance needs to be included as part of the overall 
circuit resistance, adding to whatever other series resistance exists. While it is 
possible to measure the DC resistance of a coil using a DMM, this will not 
necessarily give an accurate value at high frequencies. Thus, a preferred method is to
determine Qcoil at the desired frequency from the inductor's spec sheet, and using the 
calculated reactance at that frequency, determine the value of Rcoil. An example of 
such a curve is shown in Figure 8.11. 
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For instance, using curve A, Qcoil at 100 kHz is approximately 90. If XL is 450 Ω at 
this frequency, then Rcoil would be 450 Ω/90, or 5 Ω. 

Effectively, Qcoil sets the ceiling for the Q of the series resonant circuit, Qseries. That 
is, the system Q can never be higher than the coil Q. To do so would require less 
resistance in the loop than Rcoil, which is a practical impossibility. It is also worth 
noting that Rcoil will create a deviation in the inductor voltage compared to the ideal 
case. This is because vL covers the combination of the inductive reactance in series 
with Rcoil, thus the magnitude will be somewhat larger than expected and the angle 
will be less than 90 degrees. These deviations tend to be quite small unless the 
inductor's Q is fairly low and the remaining circuit resistance is not very much larger
than Rcoil.

Example 8.2

For the circuit of Figure 8.11, determine the resonant frequency, the system 
Q, the bandwidth, and the ideal maximum voltage across each of the three 
components. Use curve A from Figure 8.11 for the inductor.

The first item of importance is finding the resonant frequency.

f 0 =
1

2 π√LC

f 0 =
1

2π√22e-3 H50e-9F
f 0 = 4.8 kHz

The inductive reactance is:

X L = 2π f 0 L
X L = 2π 4.8kHz 22 mH
X L = 663.3Ω

From the graph, Qcoil is approximately 95, meaning Rcoil is: 
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Figure 8.12
Circuit for Example 8.2.



Rcoil =
X L

Qcoil

Rcoil =
663.3Ω

95
Rcoil = 7Ω

Combined with the 140 Ω resistor, we are left with 147 Ω, some 5% higher 
than if we had ignored it. The system Q is:

Q series =
X L

RT

Qseries =
663.3Ω
147Ω

Qseries = 4.51

The Q is on the low side but not extremely so. Now for the bandwidth:

BW =
f 0

Q

BW =
4.8 kHz

4.51
BW = 1.06 kHz

Ideally, at f0 we expect vR will be equal to the source of 1 volt peak while the
inductor and capacitor voltages will be Q times larger, or approximately 4.5 
volts peak. In reality Rcoil will create a voltage divider, reducing the drop 
across the 140 Ω resistor to about 0.95 volts. The change in vL will be 
negligible due to ZL being 663.3489.4° Ω versus the ideal 663.390° Ω. 
The system Q is relatively low (<10), so the vC and vL peaks will shift a little 
from f0, with vC peaking at a slightly lower frequency and vL slightly higher.

Computer SimulationComputer Simulation

Of particular interest in the prior example is the precise shape of the component 
responses versus frequency. This can be produced via an AC or frequency domain 
simulation. The circuit of Figure 8.12 is captured in a simulator as shown in Figure 
8.13, and is modified by adding the inductor's coil resistance below the inductor. 

The items of interest are the net resistor voltage which appears between nodes 1 and 
2, the capacitor voltage between nodes 2 and 3, and the inductor voltage which 
appears from node 3 to ground. The analysis is run from 500 Hz to 50 kHz giving us
a factor of 10 in frequency on either side of f0, as seen in Figure 8.14. First, the peaks
are just below 5 kHz, as expected. The resistor voltage (blue) is about 0.95 volts, and
the inductor (red) and capacitor (green) voltages are about 4.5 volts, as calculated.
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Also, note that there is a slight spread between the peaks of the capacitor and 
inductor voltages, with vC slightly below f0 and vL slightly above, again just as 
expected. At the lowest frequencies, all of the source appears across the capacitor 
while at the highest frequencies all of the source appears across the inductor. Note 
the similarity between these curves and those of Figures 8.8 and 8.9

And now for a change of pace; a design problem.
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Figure 8.14
Voltage versus frequency for 
each of the three components of
the circuit of Figure 8.13.

Figure 8.13
The circuit of Example 8.2 in a 
simulator.



Example 8.3

Design a series resonant circuit with a resonant frequency of 100 kHz and a 
bandwidth of 2 kHz using a 10 mH inductor. Assumes the inductor follows 
curve B in Figure 8.14.

We can find the value for the capacitance by rearranging the resonance 
frequency equation:

f 0 =
1

2π√L C

√L C =
1

2π f 0

C =
1

(2π f 0)
2 L

C =
1

(2π100 kHz )210 mH
C = 253.3 pF

Knowing the bandwidth and resonant frequency, we can find the system Q:

Q series =
f 0

BW

Qseries =
100 kHz
2 kHz

Qseries = 50

At resonance, the inductive reactance will be:

X L = 2π f 0 L
X L = 2π100 kHz 10 mH
X L = 6283Ω

The preceding tells us that the total series resistance must be:

Rseries =
X L

Q series

R series =
6283Ω

50
R series = 125.7Ω

Curve B indicates that Qcoil is approximately 115 at 100 kHz. Thus, Rcoil is: 
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Rcoil =
X L

Qcoil

Rcoil =
6283Ω

115
Rcoil = 54.6Ω

Consequently, we must add 125.7 Ω − 54.6 Ω, or 71.1 Ω, to the series 
network to achieve the desired system Q. Failure to do so will yield a much 
higher Q than specified, resulting in a much reduced bandwidth. The 
completed design is shown in Figure 8.15.

8.3 Parallel Resonance8.3 Parallel Resonance

If the three RLC components are placed in parallel, as in Figure 8.16, a parallel
resonant circuit can result. Typically, it would be driven by a current source as
shown, although this is not a requirement for resonance. Parallel resonance is
slightly more complicated than series resonance due to the fact that the series coil
resistance cannot be lumped in with the remaining circuit resistance as it can with
the series case. In other words, the practical reality is that we have a series-parallel
circuit where the inductor is, in fact, a series combination of the inductance and
the coil resistance. It turns out that usually this resistance cannot be ignored, even
if it is very small. To alleviate this problem, it is possible to find a parallel
equivalent for the series inductive reactance and associated coil resistance. That is, 
we need a series to parallel transform.

Series to Parallel Inductor TransformSeries to Parallel Inductor Transform

First, let's take a look at what we have in practical terms. A realistic parallel
resonant circuit is illustrated in Figure 8.17. This circuit adds the internal coil
resistance of the inductor to the ideal circuit shown in Figure 8.16. What we
would like to do is derive a means of finding the parallel equivalent of the
inductor with its coil resistance. Certainly, this should be possible to do. After all,
it is a trivial exercise to do the reverse; namely, taking a parallel combination of 

310

Figure 8.16
Ideal parallel resonant circuit.

Figure 8.15
Completed circuit design for 
Example 8.3.

Figure 8.17
Realistic parallel resonant 
circuit. 



an inductor and resistor and finding its series equivalent (i.e., expressing the 
resulting impedance in rectangular form). After completing the process we should 
have an equivalent circuit like that shown in Figure 8.18. In this equivalent circuit, R
and C are the values from the original circuit while L(p) and Rcoil(p) are the parallel 
equivalent transformed values derived from the original inductor. In this version, it 
is easy to combine R in parallel with Rcoil(p) to create a single resistor and thus wind 
up back at our ideal circuit of Figure 8.16. 

For the equivalent transform, refer to Figure 8.19. We start with a practical coil 
consisting of a series combination of resistance and inductive reactance, Rs + jXs.  
We will find the parallel equivalent, Rp || jXp. 

We begin with the reciprocal conductance/resistance rule:

R s+jX s =
1

1
R p

+
1

jX p

1
R s+ jX s

=
1

R p

+
1

jX p

(8.14)

The next step is to isolate the real and imaginary parts of the series version. We can 
do this by multiplying the left term of Equation 8.10 by the complex conjugate to 
arrive at an equivalent:

1
R s+ jX s

R s − jX s

R s − jX s

=
Rs

R s
2
+X s

2 +
− jX s

Rs
2
+X s

2
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Figure 8.18
Transformed (equivalent) 
version of a realistic parallel 
resonant circuit.

Figure 8.19
Series and equivalent parallel 
RL combinations.



Substituting this equivalent back into Equation 8.14 yields,

Rs

R s
2
+X s

2 +
− jX s

Rs
2
+X s

2 =
1

R p

+
1

jX p

Therefore,

1
Rp

=
R s

Rs
2
+X s

2

1
jX p

=
− jX s

R s
2+X s

2

Taking the reciprocal results in:

  Rp =
R s

2+X s
2

Rs

(8.15)

jX p = j
Rs

2+X s
2

X s

(8.16)

For high Q coils (Qcoil ≥ 10), Xs >> Rs, so we can approximate these as:

  Rp ≈
X s

2

R s

= Q coil X s = Q coil
2 R s (8.17)

jX p ≈ j
X s

2

X s

= jX s (8.18)

Thus, for a high Qcoil, the parallel equivalent reactance is unchanged from the series 
value and the parallel equivalent resistance is the series resistance times the Q of the 
coil squared. Interestingly, Equation 8.17 shows that a smaller RS (which yields a 
proportionally larger Qcoil) results in a larger RP . Thus, the ideal inductor which 
would have no coil resistance results in an Rp of infinity. Due to this resistive 
“inversion” of the series-parallel transform, parallel circuit Q is defined as:

Qparallel =
RT

X L

(8.19)

Where 
Qparallel is the Q of the parallel resonant circuit (i.e., Qcircuit for parallel),
RT is the total parallel resistance (Rp || R),
XL is the reactance at f0.
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Based on Equation 8.19 and the development of Equation 8.13, it can be shown that:

Qparallel = RT √C
L

(8.20)

For higher Q circuits (Qparallel ≥ 10), f0 is found as in the series case (repeating):

f 0=
1

2 π√LC
(8.2)

For lower Q circuits, f0 will be reduced slightly due to the fact that the transformed 
resistance is frequency dependent. More on this in an upcoming section.

Parallel Resonance ImpedanceParallel Resonance Impedance

A parallel impedance plot is shown in Figure 8.20. The effect is the inverse of the 
series case. At low frequencies the small inductive reactance results in a low 
impedance magnitude with a positive (inductive) phase angle. At high frequencies 
the small capacitive reactance results in a low impedance magnitude with a negative 
(capacitive) phase angle. At resonance the reactive values cancel. This leaves just the
parallel resistive value which produces the characteristic peak in impedance. The 
phase angle is zero, corresponding to a power factor of unity. 
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If the parallel resonant circuit is driven by a current source, then the voltage 
produced across the resonant circuit (sometimes referred to as a tank circuit) will 
echo the shape of the impedance magnitude. In other words, it will effectively 
discriminate against high and low frequencies and keep only those signals in the 
vicinity of the resonant frequency. This is one method of making a bandpass filter. 
The lower and upper half-power frequencies, f1 and f2, are found in the same manner 
as in series resonance. 

Repeating for convenience:

BW = f 2 − f 1 (8.3)

Qcircuit =
f 0

BW
(8.4)

f 0 = √ f 1 f 2 (8.5)

f 0

f 1

=
f 2

f 0

(8.6)

 

k 0 =
1

2Q circuit

+√ 1

4Qcircuit
2
+1 (8.7)

f 1 =
f 0

k 0

(8.8)

f 2 = f 0×k 0 (8.9)

For higher Q circuits (Qcircuit ≥ 10), we can approximate symmetry, and thus

f 1 ≈ f 0 −
BW
2

(8.10)

f 2 ≈ f 0+
BW
2

(8.11)

Finally, it is worth repeating that for relatively low Q values there will be some 
shifting of the resonant and half-power frequencies from the equations presented 
above. 

There are some similarities between parallel and series resonance. Like series, as the
parallel Q increases, the impedance curve becomes sharper and the phase change is 
more abrupt. Further, we also see an apparent “Q amplification” effect in parallel 
resonant circuits, however, here it will be the reactive currents that will be increased 
relative to the source current instead of the series component voltages.
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Note that the parallel resistor can be used to lower the system Q and thus broaden 
the bandwidth, however, the system Q can never be higher than the Q of the inductor
itself. The inductor sets the upper limit on system Q and therefore, how tight the 
bandwidth can be. In other words, Qcircuit ≤ Qcoil. This is the same situation we saw for
series resonance.

Example 8.4

For the circuit of Figure 8.21, determine the resonant frequency, the corner
frequencies of f1 and f2, the bandwidth and the system Q. Also find the
circuit voltage at the resonant frequency. Rcoil = 100 Ω.

First, we'll assume this is a high Q (≥ 10) circuit.

f 0=
1

2π√L C

f 0=
1

2 π√50 mH 910 pF
f 0=23.6 kHz

X L = 2π f L
X L = 2π 23.6kHz 50 mH
X L = 7.41k Ω

Qcoil =
X L

Rcoil

Qcoil =
7.41k Ω
100Ω

Qcoil = 74.1

The parallel equivalent of the coil resistance is:

Rp = Rcoil Qcoil
2

Rp = 100Ω74.12

Rp = 549.5 kΩ

There is no other resistor in parallel with the inductor and capacitor, 
therefore the equivalent parallel resistance, Rp, is the total resistance of the 
circuit, RT. Consequently, the Q of the circuit must be the same as Qcoil. We 
can verify this as follows:
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Figure 8.21
Circuit for Example 8.4.



Qparallel =
RT

X L

Qparallel =
549.5 k Ω
7.41 kΩ

Qparallel = 74.1

Our initial assumption of high circuit Q is met.

BW =
f 0

Qparallel

BW =
23.6 kHz

74.1
BW = 318 Hz

f 1 ≈ f 0 −
BW
2

f 1 ≈23.6 kHz −
318Hz

2
f 1 ≈23.44 kHz

f 2 ≈ f 0 +
BW
2

f 2 ≈23.6 kHz +
318 Hz

2
f 2 ≈23.76 kHz

To find the circuit voltage at f0, simply multiply the resonant impedance of 
549.5 kΩ times the source of 2 mA. This yields approximately 1100 volts. 

Computer SimulationComputer Simulation

The circuit of Example 8.4 is captured in a simulator as shown in Figure 8.22. 
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Figure 8.22
The circuit of Figure 8.21 in a 
simulator.



A frequency domain or AC analysis is run on the circuit, plotting the magnitude of 
the source voltage (node 1) from 2 kHz to 200 kHz. This will give us roughly a 
factor of ten on either side of the resonant frequency. The result is shown in Figure 
8.23. The plot shows a clear and sharp peak in the low 20 kHz region. Note that the 
peak voltage is just over 1000 volts, as predicted. Figure 8.24 shows a magnified 
version of this plot so that we can accurately verify the peak voltage along with f1 
and f2.

Figure 8.24 shows that the peak is indeed approximately 1100volts. The f1 and f2 
frequencies are found at 0.707 times this peak, or some 778 volts. Two measurement
cursors are employed for this task. The Y values are the voltages at the cursor's 
intersection with the curve and the X values are the corresponding frequencies. We 
can see that the results are in tight agreement with the calculations. At levels of 
about 777 to 780 volts we obtain f1 and f2 values of approximately 23.44 kHz and 
23.75 kHz, respectively.
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Figure 8.23
Source voltage of the circuit of 
Figure 8.22.



Example 8.5

For the circuit of Figure 8.25, determine the resonant frequency, the corner 
frequencies of f1 and f2, the bandwidth and the system Q. Also find the 
circuit voltage at the resonant frequency. Rcoil = 100 Ω.

This circuit is identical to the one in the previous example with the 
exception of an added 100 k Ω load resistor. This should lower the system Q
and thus widen the bandwidth. The peak impedance will also be reduced 
which will cause a decrease in the system voltage at resonance. Some 
parameters will not change. They include:

f0 = 23.6 kHz
XL = 7.41 k Ω 
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Figure 8.24
Magnified peak of the plot of 
Figure 8.23.

Figure 8.25
Circuit for Example 8.5.



Qcoil = 74.1
Rp = 549.5 k Ω 

We'll assume this is a high Q (≥ 10) circuit. 

Rp is in parallel with the load resistance of R yielding an effective parallel 
resistance of 549.5 kΩ || 100 kΩ, or 84.6 kΩ. 

Qparallel =
RT

X L

Qparallel =
84.6 k Ω
7.41k Ω

Qparallel = 11.4

The circuit Q is much reduced but our initial assumption of high circuit Q is 
still met. Now we can find the bandwidth and corner frequencies.

BW =
f 0

Qparallel

BW =
23.6 kHz

11.4
BW = 2.07kHz

f 1 ≈ f 0 −
BW
2

f 1 ≈23.6 kHz −
2.07kHz

2
f 1 ≈22.56 kHz

f 2 ≈ f 0 +
BW
2

f 2 ≈23.6 kHz +
2.07kHz

2
f 2 ≈24.64 kHz

The circuit voltage at f0 is reduced to 84.6 kΩ times 2 mA, or 169.2 volts. 

Computer SimulationComputer Simulation

The simulation results follow those of Example 8.4 and are shown in Figure 8.26. 
The results agree with the computed values. The peak voltage has been reduced to 
about 170 volts, and f1 and f2 (found at 0.707 times the peak, or approximately 120 
volts) are about 22.5 kHz and 24.6 kHz, respectively.
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Example 8.6

Consider the circuit of Figure 8.27 with the following parameters:          
L=2 mH, C=10 nF, and Qcoil = 25. Determine the resonant frequency
and a value for R such that the system bandwidth is 3 kHz.

As usual, we'll assume this is a high Q (≥ 10) circuit. This is certainly
true of the coil, although we have to determine the resonant frequency
in order to determine the Q of the circuit. 

f 0=
1

2π√LC

f 0=
1

2π √2mH 10 nF
f 0=35.59 kHz

Qparallel =
f 0

BW

Qparallel =
35.59 kHz

3 kHz
Qparallel = 11.86
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Figure 8.26
Simulation results for the 
circuit of Example 8.5.

Figure 8.27
Circuit for Example 8.6. 



We have high Q and can continue18. Ultimately, we need to determine the 
total parallel resistance required to achieve this Q. Before we can do that we 
need to determine XL.

X L = 2π f L
X L = 2π35.59 kHz 2mH
X L = 447Ω

RT = Q parallel×X L

RT = 11.86×447Ω

RT = 5.3k Ω

RT is the parallel combination of R and Rp (the parallel equivalent of Rcoil), so
first we need to find Rcoil. 

Rcoil =
X L

Qcoil

Rcoil =
447Ω

25
Rcoil = 17.9Ω

The parallel equivalent resistance of Rcoil is: 

Rp = Rcoil Qcoil
2

Rp = 17.9Ω252

Rp = 11.18 kΩ

Using the conductance rule, we can find the requisite value of R.

R =
1

1
RT

−
1

R p

R =
1

1
5.3k Ω

−
1

11.18 k Ω
 
R = 10.08 kΩ

Thus, we need to use a 10.08 kΩ resistor in order to lower the circuit Q 
enough to achieve a 3 kHz bandwidth. Without this resistor, the bandwidth 
will be less than half of what is required.

18 Note that if this value had been greater than 25 we'd be stuck for a different reason; 
namely that we'd need to obtain a higher quality inductor because Qcircuit can't be any 
higher than Qcoil.
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Computer Simulation

Figure 8.28 shows the completed design of the previous example captured in a 
simulator. A 1 mA current source is used for convenience of calculation. 

Given that RT is 5.3 k Ω, the 1 mA current source should produce 5.3 volts at the 
resonance frequency of 35.59 kHz. The results of an AC analysis are shown in 
Figure 8.29.
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Figure 8.28
Circuit design of Example 8.6 
in a simulator.

Figure 8.29
Frequency response of the 
design from Example 8.6.



First off, the f0 of approximately 35.6 kHz is verified by both the peak in voltage and
the phase angle reaching 0° at this frequency, the latter indicating perfect 
cancellation between the inductor and capacitor (i.e., the circuit impedance is purely 
resistive and achieving unity power factor). The cursors are used to obtain accurate 
values for f1 and f2. These frequencies are reached at 0.707 of the peak of 5.3 volts, 
or about 3.75 volts. The frequencies are approximately 34.15 kHz and 37.15 kHz, 
achieving the desired bandwidth of 3 kHz.

Low Q Parallel Resonance

There are some changes in the computations when Qparallel is low. Generally, this 
means values below 10, although we might think of values between 5 and 10 to be a 
transition region where deviations of two percentage points or less come into play. 
Once the circuit Q falls below 5, the deviations from the high Q equations grow 
rapidly and quickly rise into double digit percentages. The main item of interest here
is the shift in f0. 

These deviations are caused by the fact that the approximations used for Equations 
8.17 and 8.18 are no longer true. That is, with low Qcoil values, we can no longer
assume that the transformed XL is the same as the original XL (i.e., Xp and Xs in
Figure 8.19). Given this fact, we can revisit the basic parallel RLC circuit, but this
time using the exact value from the series-to-parallel inductor transform. This is
shown in Figure 8.30. RLoad is the combined resistance of the parallel network while 
Xp is the equivalent value obtained from Equation 8.16 (slightly modified and 
repeated for convenience):

X p =
X 2+R2

X

X and R in this equation are the original series values for the inductor. At f0, the 
magnitudes of the reactances are equal, or XC = Xp, therefore,

X C =
X 2+R2

X

Expanding yields:

1
2π f 0 C

=
(2π f 0 L)2+R2

2π f 0 L

Now rearrange and simplify.

2 π f 0 L

2π f 0 C
= (2π f 0 L)

2
+R2
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Figure 8.30
Parallel RLC network with 
exact series transform 
equivalent. 



L
C

= (2π f 0 L)
2
+R2

(2π f 0 L)2 =
L
C

−R2

2π f 0 L = √ L
C

−R2

2π f 0 = √ 1
LC

−
R2

L2

2π f 0 =
1

√LC √1 −
C R2

L

And finally we come to:

f 0 =
1

2π√LC √1 −
C R2

L
(8.21)

If desired, we can treat the first term as the ordinary series resonant frequency and 
the second term as a fractional coefficient, as in:

f 0 = f series k p (8.22)

Where

k p = √1 −
C R2

L
(8.23)

Using Equation 8.20, kp may also be expressed as:

k p = √1 −
1

Q
2 (8.24)

Examining Equation 8.23 might lead to some concern, namely, what happens if the 
second term is greater than or equal to 1? Remember, the definition we're using for 
resonance is the frequency at which the reactances cancel, which means the phase 
angle is 0° (unity power factor). If the second term is greater than or equal to 1, the 
phase shift will never reach 0°, and by that definition, we don't really have a 
resonant circuit anymore.

We will explore the reality of this situation by starting with a simple high Q parallel 
circuit and then investigate the changes in the magnitude and phase response as the 
Q is decreased. We begin with the circuit of Figure 8.31.
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Assuming we have high circuit Q, the resonant frequency is:

f 0=
1

2π√L C

f 0=
1

2 π√1 mH 100 nF
f 0=15.92 kHz

X L = 2π f L
X L = 2π15.92 kHz 1mH
X L = 100Ω

Qcoil =
X L

Rcoil

Qcoil =
100Ω

5Ω
Qcoil = 20

There are no other resistances in the circuit, therefore Qcircuit = Qcoil and our initial 
assumption is correct. The circuit is captured in a simulator and an AC analysis is 
performed. The resulting plots are shown in Figure 8.32.

325

Figure 8.32
Simulation results using a coil 
resistance of 5 Ω (Q of 20).

Figure 8.31
A basic parallel network.



The resonant frequency appears to be just under 16 kHz, as predicted. Cursor-based 
measurement of the frequency at which the phase crosses 0° yields 15.89 kHz. This 
turns out to be even closer than it seems. In spite of the high circuit Q, kp was 
calculated and as expected is very close to unity, namely 0.99875. When multiplied 
by the ideal f0 (i.e., using Equation 8.22), we arrive at 15.90 kHz. Splitting hairs 
perhaps, but it's good to know the deviation is shrinking.

Next, the coil resistance is raised to 50 Ω, yielding a Q of only 2. The simulation is 
run a second time. kp drops to 0.866 with this lowered Q and should produce an f0 of 
approximately 13.77 kHz. The plots are shown in Figure 8.33, and zoomed in for a 
better view. From the lower graph it is obvious that the frequency where the curve 
reaches 0° is just below 14 kHz. Accurate measurement yields 13.78 kHz, right in 
line with the theoretical computation.

Finally, the coil resistance is increased to 100 Ω. This drops the circuit Q to 1 and 
more importantly, brings kp down to 0. The resulting simulation plots are shown in 
Figure 8.34. At first glance the phase plot looks similar to that of Figure 8.32, 
however, notice that the phase scale has changed with 0° as the maximum. In fact, 
the phase shift never quite reaches 0°. In this regard we can still say that the kp 
equation remains an accurate predictor. 
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Figure 8.33
Simulation results using a coil 
resistance of 50 Ω (Q of 2).



Alternate Definition for Parallel Resonant Frequency

Instead of defining the parallel resonant frequency as the point where the power 
factor is unity, i.e., where XL and XC have the same magnitude, it can be defined in 
terms of the frequency where the magnitude of the impedance is maximum. For high
Q circuits the two definitions produce essentially the same frequency, however, as 
the circuit Q decreases into the single digits, the frequency of maximum impedance 
begins to deviate from both the high Q idealization and the general unity power 
factor definition. In fact, the frequency of maximum magnitude is situated between 
the two. We shall refer to this frequency as fZ-max to avoid confusion. The formula is:19

f Z-max = f 0√√ 2

Qcircuit
2
+1 −

1

Q circuit
2 (8.25)

19 For a non-calculus proof, see K. Cartwright, E. Joseph, E. Kaminsky, “Finding the Exact 
Maximum Impedance Resonant Frequency of a Practical Parallel Resonant Circuit Without 
Calculus”, Technology Interface International Journal, vol. 11, no. 1, Fall/Winter 2010. 
[Online Serial]. Available:  http://tiij.org/issues/issues/winter2010/fall_winter_2010.htm 
[Accessed February 15, 2020 ].

327

Figure 8.34
Simulation results using a coil 
resistance of 100 Ω (Q of 1).

http://tiij.org/issues/issues/winter2010/fall_winter_2010.htm


This equation will yield a value between the ideal high Q case and the unity power 
factor case. This can be seen in Figure 8.34 where there is still an impedance peak 
(as evidenced by the voltage peak) in spite of the fact that a phase angle of 0° is not 
reached. Furthermore, the frequency of the peak is below that of the high Q case. 
Equation 8.25 predicts a peak at 13.6 kHz which agrees with the value obtained 
from the simulation.

Combination Series and Parallel Resonance

In closing our discussion on resonance we might ask whether or not there are 
practical, everyday examples of systems exhibiting series and parallel resonance in 
series-parallel circuits. The answer is yes. A good example is that of a basic dynamic
moving coil loudspeaker of the type seen in Chapter 2. This is an electro-mechanical
system and thus a proper model has to include the effects of such items as the 
mechanical losses in the system, the mass of the cone, and the like. One possibility 
is shown in Figure 8.35. Lvc and Rvc are the inductance and resistance of the voice 
coil. The remaining components model other aspects of the electro-mechanical 
system. An impedance plot of a typical loudspeaker is shown in Figure 8.36.
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Figure 8.35
Equivalent electrical network  
of a single dynamic 
loudspeaker.
Adapted from R.H.Small, “Direct-
Radiator Loudspeaker System 
Analysis”, Journal of the Audio 
Engineering Society, June 1972

Figure 8.36
Impedance magnitude and 
phase of a typical dynamic 
loudspeaker.
Courtesy Dayton Audio

https://www.daytonaudio.com/


The loudspeaker of Figure 8.36 is a medium-size woofer with a nominal impedance 
of 8 Ω. First, note the large variation on both the phase and magnitude of the 
impedance. The parallel items from the model produce an obvious peak in 
impedance just below 30 Hz. This is referred to as the free air resonance and is 
denoted by fs. For this device, the magnitude is over three times the nominal value. 
Also note that the phase angle is 0° at fs, and that the phase is positive (inductive) 
below the resonant frequency and negative (capacitive) above it. This behavior is 
expected from a parallel resonant system. The series elements of the model create 
the rising impedance that is seen following the dip. Note that the phase angle 
continues to increase as frequency rises, indicating the growing dominance of the 
series inductive element. 

8.4 Summary8.4 Summary

Resonance can be described as a preferred mode of vibration, or a frequency at 
which a system operates particularly well. Resonant systems can be used to filter out
or select specific frequencies across the spectrum. Obvious uses include tuning 
circuits, oscillators, filters and the like. In electrical systems there are two basic 
forms; series RLC resonance and parallel RLC resonance. Series resonance tends to 
be the less complicated of the two. 

For series resonance, the resonant frequency, f0, is defined as the frequency at which 
the magnitude of XL equals the magnitude of XC. In this instance, the reactances 
cancel, leaving the series impedance as R. This creates a U-shaped curve for the 
impedance as it varies across the frequency spectrum. At low frequencies, the 
capacitive reactance dominates and the series impedance is high in magnitude and 
capacitive. At frequencies above the resonant frequency, the inductive reactance 
dominates and the series impedance is again high in magnitude but it is inductive. If 
this circuit is driven with a constant voltage source, the current will be maximum at 
resonance and tail off at lower and higher frequencies. The sharpness of the current 
curve across frequency is a function of the system Q, or quality factor. A high Q 
circuit is one with a very sharp and narrow curve. The “shoulders” of the curve are 
defined as the frequencies at which the power has dropped to one half of the value at
resonance. This corresponds to 0.707 times the current at resonance. The lower 
frequency is f1 and the upper frequency is f2. The difference between the two is 
called the bandwidth, BW. The ratio of resonant frequency to the bandwidth yields 
the circuit Q. Circuit Q can also be found by dividing the magnitude of reactance at 
resonance to the total circuit resistance. In high Q circuits it is possible for the 
voltage across the inductor or capacitor to be many times higher than the source 
voltage, higher in fact, by a factor of Q. 

329



Parallel resonance is similar to series resonance but in some ways is like its mirror 
image. In a parallel resonant circuit the inductor will dominate at low frequencies 
and produce a small net impedance. At high frequencies, the capacitor will dominate
and also produce a small net impedance. At resonance, the two effectively will 
cancel and yield a large impedance. In other words, the impedance versus frequency 
curve will appear like an upside down U, producing maximum impedance at 
resonance, and the opposite of the series impedance curve. If this system is driven 
by a constant current source, the resulting voltage will echo the shape of the 
impedance curve, producing maximum voltage at resonance. The upper and lower 
frequencies, along with the bandwidth and system Q, are defined in the same manner
as they are in the series case (with one exception regarding finding Q via resistance 
and reactance). 

There is one important caveat regarding parallel resonant circuits. Practical inductors
contain a non-trivial series coil resistance. This can play a dominant role in the 
system response. Analysis is generally handled by performing a series to parallel 
transform which creates a parallel resistance out of the inductor's series resistance. 
As a result, system Q can be found as the ratio of effective parallel resistance to 
maximum reactive magnitude, the opposite of the series case. For high Q systems, 
generally taken as 10 or higher, the resonant frequency can use the same equation as 
the series case. For low Q systems, the series to parallel transform creates a shift in 
resonant frequency, making it somewhat lower than the value obtained from the 
basic series equation. Also, the inductor and capacitor currents will be approximately
Q times higher than the source current, made possible because they are 180 degrees 
out of phase with each other and effectively cancel. 

In both series and parallel systems, for high Q, f1 and f2 are assumed to lie 
equidistant from f0, splitting BW in half on either side. This is just an approximation 
and errors will grow as the Q decreases. More accurately, the two frequencies lie 
where the ratio of f1/f0 is the same as the ratio of f0/f2. 

Review QuestionsReview Questions

1. Describe the concept of resonance. How is resonance defined in a series 
RLC network?

2. Sketch the impedance versus frequency plot for series resonance.
3. Sketch the impedance versus frequency plot for parallel resonance.
4. Define the terms resonant frequency, bandwidth and Q.
5. How does inductor Q impact system Q in resonant circuits? 
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8.5 Exercises8.5 Exercises

Inductor Q curves to be used with the exercises below

AnalysisAnalysis

1. A circuit has a resonant frequency of 440 kHz and a system Q of 30. 
Determine the bandwidth and the approximate values for f1 and f2.

2. A circuit has a resonant frequency of 19 kHz and a bandwidth of 500 Hz. 
Determine the system Q and the approximate values for f1 and f2.

3. Find the Qcoil and coil resistance of a 150 μH inductor at 100 kHz using 
device curve A.

4. Find the Qcoil and coil resistance of a 2.2 mH inductor at 50 kHz using 
device curve D.

5. At a certain frequency, an inductor's impedance is 24 + j600 Ω. Determine 
the parallel resistance and reactance that produces the same value. 
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6. At a certain frequency, an inductor's impedance is 3 + j150 Ω. Determine the
parallel resistance and reactance that produces the same value.

7. A certain 75 μH inductor is described by curve B. Determine the equivalent 
parallel inductor/resistor combination at 1 MHz.

8. A certain 3.3 mH inductor is described by curve C. Determine the equivalent
parallel inductor/resistor combination at 20 kHz.

9. Consider a series circuit consisting of a 2 nF capacitor, an ideal 33 μH 
inductor and a 5 Ω resistor. Determine the resonant frequency, system Q, 
and bandwidth.

10. Consider a series circuit consisting of a 20 nF capacitor, an ideal 100 μH 
inductor and a 2.7 Ω resistor. Determine the resonant frequency, system Q, 
and bandwidth.

11. Consider a series circuit consisting of a 50 nF capacitor, a 20 mH inductor 
with Qcoil of 50 and a 63 Ω resistor. Determine the resonant frequency, 
system Q, and bandwidth.

12. Consider a series circuit consisting of a 200 nF capacitor, a 1 mH inductor 
with Qcoil of 65 and a 72 Ω resistor. Determine the resonant frequency, 
system Q, and bandwidth.

13. For the circuit shown in Figure 8.37, determine the resonant frequency, 
system Q and bandwidth. Assume Rcoil = 0 Ω. If the source is 1 volt peak, 
determine the capacitor voltage at resonance.

14. For the circuit shown in Figure 8.38, determine the resonant frequency, 
system Q and bandwidth. Assume Rcoil = 0 Ω. If the source is 10 volts, 
determine the capacitor voltage at resonance.
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Figure 8.37

Figure 8.38



15. Repeat problem 13 but assume instead that the inductor's Rcoil = 15 Ω.

16.  Repeat problem 12 but assume instead that the inductor follows curve D.

17. For the circuit shown in Figure 8.39, determine the resonant frequency, 
system Q and bandwidth. If the source is 20 mA peak, determine the resistor
and capacitor voltages at resonance.

18. For the circuit shown in Figure 8.40, determine the resonant frequency, 
system Q and bandwidth. If the source is 100 mA, determine the resistor and
capacitor voltages at resonance.

19. For the circuit shown in Figure 8.41, determine the resonant frequency, 
system Q and bandwidth. If the source is 15 volts, determine the inductor 
and capacitor currents at resonance. Assume the inductor's coil resistance is 
3.2 Ω.
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Figure 8.39

Figure 8.40

Figure 8.41



20. For the circuit shown in Figure 8.42, determine the resonant frequency, 
system Q and bandwidth. If the source is 3 volts, determine the inductor and
capacitor currents at resonance. Assume the inductor's Q is 30.

21. For the circuit shown in Figure 8.43, determine the resonant frequency, 
system Q and bandwidth. If the source is 15 volts, determine the resistor, 
inductor and capacitor currents at resonance.

22. Given the circuit shown in Figure 8.44, determine the resonant frequency, 
system Q and bandwidth. If the source is 2 volts, determine the resistor, 
inductor and capacitor currents at resonance. Assume the inductor's coil 
resistance is 2.5 Ω.

23. For the circuit shown in Figure 8.45, determine the resonant frequency, 
system Q and bandwidth. If the source is 5 volts, determine the resistor, 
inductor and capacitor currents at resonance. Assume the inductor's Q is 40.
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Figure 8.44

Figure 8.42

Figure 8.45



24. Given the circuit shown in Figure 8.46, determine the resonant frequency, 
system Q and bandwidth. If the source is 2.5 mA, determine the resistor 
voltage and the three branch currents at resonance.

25. For the circuit shown in Figure 8.47, determine the resonant frequency, 
system Q and bandwidth. If the source is 500 μA, determine the resistor 
voltage and the three branch currents at resonance. Assume the inductor's Q 
is given by curve C.

26. Given the circuit shown in Figure 8.48, determine the resonant frequency, 
system Q and bandwidth. If the source is 10 mA, determine the resistor 
voltage and the three branch currents at resonance. Assume the inductor's Q 
is given by curve B.

DesignDesign

27. A series resonant circuit has a required f0 of 50 kHz. If a 75 nF capacitor is 
used, determine the required inductance. 

28. A series resonant circuit has a required f0 of 210 kHz. If a 22 μH inductor is 
used, determine the required capacitance. 
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29. A parallel resonant circuit consists of a 12 nF capacitor and a 27 μH inductor
with a Qcoil of 55. Determine the required additional parallel resistance to 
achieve a system Q of 40. 

30. A series resonant circuit has a design target of f0=200 kHz with a bandwidth 
of 5 kHz. Which of the inductor curves above (A, B, C, D) represent 
possible candidates, if any, and why/why not?

31. A parallel resonant circuit has a design target of f0=1 MHz with a bandwidth 
of 20 kHz. Which of the inductor curves above (A, B, C, D) represent 
possible candidates, if any, and why/why not?

ChallengeChallenge

32. A parallel resonant circuit has a required f0 of 50 kHz and a bandwidth of      
4 kHz. If a 75 nF capacitor is used and the load impedance is 100 kΩ, 
determine the required inductance and minimum acceptable Qcoil. 

33. A parallel resonant circuit consists of a 150 nF capacitor and a 200 μH 
inductor that has a coil resistance of 1 Ω. The desired bandwidth for the 
network is 2 kHz. Determine the value of resistance to be placed in parallel 
with the network in order to achieve this goal.

34. A resonant circuit consists of a 4 nF capacitor in parallel with a 100 μH coil 
that has a coil resistance of 5 Ω. Determine the resonant frequency and 
bandwidth. Further, assume that this circuit is now loaded by an amplifier 
that has an input impedance equivalent to 10 kΩ resistive in parallel with 
500 pF of input capacitance. Also, the amplifier is connected via 25 feet of 
coaxial cable that exhibits a capacitance of 33 pF per foot. Determine the 
changes in resonant frequency and bandwidth, if any, with this load.

SimulationSimulation

35. Use an AC frequency domain analysis to verify the results of problem 13. 
Plot the resistor voltage from 0.1 f0 to 10 f0.

36. Use an AC frequency domain analysis to verify the results of problem 19. 
Do this by overlapping plots of the resistor, capacitor and inductor voltages 
across a range of 0.1 f0 to 10 f0. 
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37. Investigate the effects of inductor Q on the system bandwidth of problem 
21. Plot the system voltage from 0.01 f0 to 100 f0 three times, the first using 
the specified coil resistance and then using values ten times larger and ten 
times smaller.

38. Investigate the effects of component tolerance on the system frequency 
response of problem 21. Plot the system voltage from 0.1 f0 to 10 f0 using a 
Monte Carlo variation on the AC frequency domain response. Set a 10% 
tolerance on the capacitor, inductor and resistor but do not alter the coil 
resistance.

39. Use an AC frequency domain analysis to verify the design of problem 27. 
Plot the resistor voltage from 0.1 f0 to 10 f0.

40. Use an AC frequency domain analysis to verify the design of problem 29. 
Plot the system voltage from 0.1 f0 to 10 f0.

41. At high Q values (>10) the capacitor and inductor voltages of series 
resonant circuits will tend to reach maximum very close to the resonant 
frequency. At lower Qs, these peaks tend to diverge. A similar situation 
occurs with the currents in parallel resonant circuits. Investigate this effect 
by performing an AC frequency domain analysis on problem 14. Overlay 
plots of vab, vbc and vc for successively larger values of resistance.

42. Investigate the “Q increase” in reactive currents compared to source and 
resistive currents in a parallel resonant circuit. A simple way to verify this is 
by placing AC ammeters in each of the branches of the circuit shown in 
Figure 8.49. Use R = 630 Ω, C = 40 nF, L = 10 μH and i = 1 mA. It is 
worthwhile to compare sets of simulations for different resistor values to see
the current changes relative to the system Q. Slight variations of the source 
frequency may be required to reach the peak.
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9 9 Polyphase PowerPolyphase Power

9.0 Chapter Learning Objectives9.0 Chapter Learning Objectives

After completing this chapter, you should be able to: 

• Define the differences between polyphase and single phase systems and detail their advantages.
• Determine line voltage, line current, phase voltage and phase current in three-phase systems.
• Analyze three-phase systems in both delta (Δ) and Y (wye) configurations.

9.1 Introduction 9.1 Introduction 

In this chapter we shall introduce the concept of polyphase systems. Polyphase systems can be visualized as a 
group of individual sources of the same magnitude that are separated by a certain phase angle such that they are 
evenly divided across a single period. The polyphase load is similarly divided into individual sections or legs. 
By dividing the sources, the application of power can be much more smooth. Further, for the same total load 
power, the current delivered by each of the segments is reduced compared to a single phase system. For an 
analogy we could look at a bicycle. A single phase system is like pedaling with only one leg. That is, power is 
applied in a single burst per revolution of the pedal. Having two pedals is like a two-phase system; power is 
delivered twice per revolution, once for the right leg and once for the left. Because there are two pedals, it 
makes sense to separate them physically by 180 degrees or one half of a revolution, otherwise the power 
delivery will not be smooth. It should obvious to anyone who has pedaled a bike that you must pump a single 
pedal much harder using only one leg to achieve the same speed obtained when pumping with both legs. 

Polyphase loads can be balanced or unbalanced. A balanced load means that all legs or sections of the load 
exhibit the same impedance. Consequently, the currents supplied by the sources will be the same except for the 
phase shifts between them. It is possible to create a polyphase system using any number of phases,  however, the
more phases we add, the more complex the construction of the polyphase source and load. Also, the number of 
required conductors between the source and load increases (one per phase). These all increase construction, 
installation and maintenance costs. Polyphase systems using three sections (hereafter simply referred to as 
three-phase systems) are popular because they deliver the benefits of polyphase while limiting the complexity 
and minimizing the costs. Therefore, we shall our limit our discussion to three-phase systems utilizing balanced 
loads.

Three-phase systems can be wired in either delta or Y configurations, or a combination. These are reminiscent of
the delta and Y constructs seen in earlier chapters. We shall investigate all of the combinations to determine 
system parameters such as line voltage, line current and load power. We will also investigate power factor 
correction for balanced loads that have a non-negligible phase angle.
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9.2 Polyphase Definition9.2 Polyphase Definition

A polyphase system uses multiple current-carrying wires with multiple sub-
generators, each with their own unique phase. This allows for considerable delivery 
of power to the load. The most popular scheme is the three-phase configuration. This
can be visualized as three individual sine generators that are interconnected as 
shown in Figure 9.1. To the left is a Y (also known as wye or T) connected generator. 
To the right is a delta (i.e. Δ, and also known as π when drawn upside down) 
connected generator. 

There are multiple ways of reproducing these generators on schematics. Some 
alternate forms for Y-connected generators are shown in Figure 9.2. The lone “tail” 
shown on the version to the right is a connection back to the common center of the 
three sub-generators. This is called the neutral line. It is not always used.

In Figure 9.3 we have some alternate forms for delta-connected generators. Delta 
generators do not have the optional fourth connection as there is no common center 
point. Also, note that the version on the left is drawn upside down (i.e., in the π 
configuration).
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Figure 9.3
Alternate schematic symbols  
for delta-connected generators.

A

B C

A B

C

Figure 9.1
Three-phase generators:Y-
connected (left) and delta-
connected (right).

Figure 9.2
Alternate schematic symbols  
for Y-connected generators.



Of particular importance is the relative phase of each source. As the load will also 
have three segments or legs (a three-phase load), a consistent delivery of power 
demands that the three sources be spread equally over time. This means that each 
source is one-third of a cycle, or 120 degrees, out of phase with the other legs (i.e., 
leading one and lagging the other). This is shown in Figure 9.4. We shall only 
consider the case of balanced loads, that is, where each leg of the load is identical to
the other legs.

Notice the effectiveness of using the 120 degree stagger. At any time there is always 
either a peak or the shoulders of two adjacent peaks. These peaks can be either 
positive or negative polarity. This makes for a total of six peaks across the 
waveform's period. Therefore, a null is never more than 30 degrees away from the 
nearest peak. Indeed, when it is 30 degrees away, then it's precisely in between two 
peaks, and the value from each is the sine of 60 degrees (i.e., 30 degrees off of the 
peak at 90 degrees) or 86.6% of the peak value. Thus, it should be obvious that 
consistent power can be applied by this system. The inevitable car analogy is that we
have gone from a two cylinder engine to a six cylinder engine when moving from 
single phase to three-phase. 

There are several ways to connect three-phase generators to three-phase loads, as we
shall see in the next section.
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Figure 9.4
Relative phases of the three 
sub-generators.
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9.2 Three-Phase Connections9.2 Three-Phase Connections

It is possible to configure systems using delta- or Y-connected sources with either 
delta- or Y-connected loads. One item to note is that delta-connected systems are 
always three wire systems while Y-connected systems can make use of a fourth 
neutral wire (the common point to which all three sources connect). 

Homogeneous SystemsHomogeneous Systems

The most straightforward systems are delta-to-delta and Y-to-Y. We shall refer to 
these as homogeneous systems as the structures of the generator and load are similar.
Examples are shown in Figures 9.5 and 9.6, respectively.

In these configurations, each leg of the load matches up with a corresponding leg of 
the generator. In the delta-delta configuration of Figure 9.5, it should be obvious just
by inspection that the voltage across any load leg must equal the voltage of the 
corresponding generator leg. For example, the load impedance connected between A'
and B' must see the voltage presented by the generator situated between A and B 
because A is directly connected to A' as is B to B'. Similarly, for the Y-Y 
configuration of Figure 9.6, the current through any load leg must equal the current 
flowing through the associated generator leg as there are no other paths for current 
between A and A', B and B', and C and C'.

As the load is balanced and the legs of the generator are identical except for their 
phase, it must be the case that the voltages and currents (and hence the powers) for 
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Figure 9.5
A delta-connected generator 
with a delta-connected load 
(delta-delta).

Z Z

Z

A B

C

A' B'

C'
+

-

+
-

+
-

Figure 9.6
A Y-connected generator with  
a Y-connected load (Y-Y). 
Optional fourth neutral wire 
from center to center shown.



each leg of the load must be the same, with the exception of the phase. This is true 
for both the Y-Y configuration as well as the delta-delta configuration. The tricky bit
here is the difference between a source (or load) current or voltage, and the line 
current or voltage.

Line voltage is the voltage magnitude between any two conductors 
connecting the source to the load, excluding ground or common. 

Line current is the current magnitude flowing in any conductor connecting 
the source to the load, excluding ground or common.

Consider the delta-delta system of Figure 9.5. We have already established that the 
voltage developed by generator A,B must be the same as the voltage across the load 
A',B'. Thus, the voltage measured from the A, A' conductor to the B,B' conductor 
must be the same as source and and load voltages. In other words, in the delta-delta 
configuration, the source, load, and line voltages are all the same.

We also found that the source and load currents must be the same for the delta-delta 
configuration, however, this does not imply that the current flowing through the 
wire connecting A to A' must be the same as the current flowing through either the 
generator or the load. After all, two load wires connect to A', not just one. By 
definition, the current flowing through that wire is the line current, and therefore in a
delta-delta configuration, the line current is not the same as the source or load 
currents. To avoid confusion, the voltage or current associated with a single leg is 
referred to as the phase voltage or current versus the line voltage or current.

Turning to the Y-Y configuration of Figure 9.6, we see an opposite situation. The 
source, load, and line currents will all be the same. On the other hand, the line 
voltage comprises two generators, not one (e.g., from A to B or from B to C). Thus, 
for a Y-Y configuration the source and load voltages are the same, but they are not 
equal to the line voltage (nor is twice, thanks to the phase shift).

Determining Line Voltage and CurrentDetermining Line Voltage and Current

In order to determine the line voltage for a Y-connected generator (and similarly, the 
line current for a delta connected generator), it is useful to examine a phasor plot of 
the individual generator voltages. This is shown in Figure 9.7. We have three 
voltages of identical amplitude, the only difference between them being their phase. 
Each vector is separated from the others by 120 degrees. Further, each individual 
generator is connected from the common point to one of the external points of A, B 
and C. Line voltage is defined as the potential existing between any two if these 
three points. While it's possible to simply subtract one generator voltage from 
another to arrive at the difference, there is a nice graphical solution from which we 
can derive a precise formula for the line voltage given the generator voltage.
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We begin by focusing on quadrants two and three of the phasor plot. This section is 
redrawn in Figure 9.8. In reality, any two vectors can be used for the following 
proof, but this pair turns out to be particularly convenient in its orientation.

For ease of use we shall normalize the magnitude of the generator voltage to unity. 
What we see is that the B and C vectors are split perfectly by the horizontal axis; that
which is above the axis is perfectly mirrored below it. In the upper portion we find a 
right triangle with a hypotenuse of unity (dark red). The angle it makes with the 
horizontal must be half of the angle between it and the C vector. That's half of 120 
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Solving for the line voltage of   
a Y-connected generator.
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degrees, or 60 degrees. As the sum of the interior angles of a triangle must be 180 
degrees, this means that the third angle must be 30 degrees. The horizontal leg of the
triangle (dark yellow or maybe “spicy mustard”) can be determined because we 
know both the hypotenuse and the opposite angle.

opposite = hypotenuse×sinθ

The sine of 30 degrees is exactly 0.5, therefore, the horizontal leg of the triangle 
must be 0.5 times the magnitude of unity, or 0.5. We can use the Pythagorean 
theorem to find the remaining vertical leg (purple).

vertical = √hypotenuse2
−horizontal2

vertical = √12−0.52

vertical = √ 3
4

vertical =
1
2

√3

The vertical leg is perfectly mirrored below the horizontal axis. Therefore, the span 
from B to C must be twice this value, or √3. As the voltage developed across each 
leg of the generator is referred to as the generator's phase voltage, we can state:

The line voltage for a Y-connected generator is √3 times its phase voltage.       (9.1)

For example, if the phase voltage of a Y-connected generator is 120 volts, the line 
voltage would be √3 times larger, or approximately 208 volts. 

For a delta-connected generator, the same holds true for the phase and line currents, 
with the proof left as an exercise. That is, 

The line current for a delta-connected generator is √3 times its phase current.    (9.2)

These same relationships hold for the loads as well as the sources, e.g., the current in
a leg of a Y-connected load will be the same as the line current and its phase voltage 
will be √3 times smaller than the line voltage. 

In summation: For delta configurations (generator or load), the phase 
voltage is equal to the line voltage while the line current is larger than the 
phase current by √3. For Y configurations, the phase current is equal to the 
line current while the line voltage is √3 larger than the phase voltage.

For homogenous systems, as the generator and load share the same configuration, 
the phase voltages and currents of the load must be identical to those of the 
generator. A useful memory aid is that the power dissipated in the system must equal
the power generated. 
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Example 9.1

A three-phase delta-connected generator feeds a three-phase delta-connected
load like the system shown in Figure 9.5. Assume the generator phase 
voltage is 120 VAC RMS. The load consists of three identical legs of 50 Ω 
each. Determine the line voltage, load phase voltage, generator phase 
current, line current, load phase current and the total power delivered to the 
load.

As this is a homogenous (delta-delta) system, the load phase voltage and 
current are the same as those of the generator. Therefore, the load phase 
voltage must also be 120 volts. Second, in a delta configuration, the line 
voltage equals the phase voltage, again 120 volts. The load phase current is 
found via Ohm's law and will be an RMS value because the voltage is RMS:

i phase =
v phase

Z load

i phase =
120 V
50Ω

i phase = 2.4 A

The generator's phase current must be the same because the generator and 
load have the same configuration. For delta configurations, the line current 
is √3 times larger than the phase current, thus,

i line = √3×i phase

i line = √3×2.4A
i line ≈ 4.157 A

Finally, total power can be found with a straight application of power law as 
the load is purely resistive and we have RMS values. Remember, this is three
times the power dissipated in one leg.

P total = 3×i phase
2×R

P total = 3×(2.4 A)2×50Ω

P total = 864 W

This is equivalent to about 1.2 HP. We could have also computed the load 
phase power by using the squared phase voltage divided by the load 
resistance, or by multiplying the phase voltage by the phase current. As this 
is a purely resistive load, there is no phase angle, and thus no power factor 
with which to concern ourselves.
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Example 9.2

A three-phase Y-connected generator feeds a three-phase Y-connected load 
similar to the system shown in Figure 9.6. Assume the generator phase 
voltage is 220 VAC RMS. The load consists of three identical legs of 100 Ω 
each. Determine the line voltage, load phase voltage, generator phase 
current, line current, load phase current and the total power delivered to the 
load.

This is a homogenous (Y-Y) system, therefore the load phase voltage and 
current are the same as those of the generator. Consequently, the load phase 
voltage must be 220 volts. In a Y configuration, the line voltage equals the 
phase voltage times √3. 

vline = √3×v phase

vline = √3×220 V
vline ≈ 381 V

The load phase current is found via Ohm's law and will be an RMS value 
because the voltage is RMS. This is the same as the generator phase current 
and also the line current.

i phase =
v phase

Z load

i phase =
220 V
100Ω

i phase = 2.2 A

Total power can be found using basic power law as the load is purely 
resistive and we have RMS values. In this case we'll use current times 
voltage for a change of pace.

P total = 3×i phase×v phase

P total = 3×2.2 A×220 V
P total = 1452 W

This is just shy of 2 HP. Once again, this is a purely resistive load and there 
is no phase angle. Thus, the power factor is unity with the real and apparent 
powers being the same.
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Example 9.3

For the the system shown in Figure 9.9, determine the total apparent and real
power delivered to the load. Also find the line voltage. The phase voltage of 
the source is 240 volts RMS at 60 Hz.

Given the fact that the three load legs are all together at one common point 
(ground), this must be a Y-Y system. Consequently, we know that the line 
voltage must be √3 times the phase voltage of the generator. 

vline = √3×v phase

vline = √3×240 V
vline ≈ 416 V RMS

This is a homogenous system (Y-Y) so we also know that the load voltage is 
equal to the generator voltage, or 240 volts RMS. From that we can find the 
load current (the line current must be the same value because this is a Y-
connected load).

i phase =
v phase

Z load

i phase =
240 V

40+ j 30Ω
i phase = 4.8 −36.87 ° A

The phase angle is appropriate for the 0° reference generator. The other two 
angles will be off of this by ±120°. The apparent power is simply the 
product of the load current and voltage magnitudes.

S = 3×iload×vload

S = 3×4.8A×240 V
S = 3456 VA
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Figure 9.9
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The real power can be found a few different ways:

P = S×cosθ
P = 3456 VA×cos (−36.87 °)
P = 2765 W

P = 3×i load
2×Rload

P = 3×4.8A2×40Ω
P = 2765 W

Computer SimulationComputer Simulation

The circuit of Example 9.3 is worthy of a simulation. The first thing to do is to 
determine an appropriate value of inductance to achieve a reactance of j40 Ω. Given 
the 60 Hz source frequency, this turns out to be approximately 80 mH. The circuit is 
constructed as shown in Figure 9.10. The 240 volt RMS source phase voltage is 
equivalent to approximately 340 volts peak. The positions of the inductor and 
resistor in each leg have been swapped for a reason that will be apparent shortly.

The immediate item of interest is to verify the time shifts and amplitudes of the 
phase voltages. These correspond to nodes 1, 2 and 3. In this configuration, the load 
phase voltage equals the generator phase voltage, thus they should be 340 volts peak
and separated by 120 degrees or 1/3rd of a cycle. 

A transient analysis is performed, plotting the node voltages of interest. The result is 
shown in Figure 9.11. The voltages are precisely as expected and the plot compares 
perfectly to the theoretical plot of Figure 9.4.
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Figure 9.10
The equivalent system of  
Figure 9.9 in a simulator.



Now we check the line voltage. This was calculated to be 416 volts RMS, or 
approximately 588 volts peak. The post processor is used to display the result of 
node voltage 1 minus node voltage 2. This is shown in Figure 9.12. Again, the 
results are as expected with a peak just under 600 volts.

Finally, we will investigate the true load power. Perhaps the easiest way to do this is 
to determine the voltage across the resistive portion of the load. From prior work we 
know that true power is only associated with resistance, not reactance. Thus, all we 
need to do is measure the peak voltage across the resistor. From there, we find its 
RMS equivalent, square it, and divide by the resistor value. This gives us the true 
load power in one leg. For the total power we simply triple the result. Obtaining the 
voltage across the resistor is easy if the resistor is attached to ground. In that case, 
it's just the voltage at the node to which the resistor is connected. This is why the 
inductor and resistor positions were swapped in the simulation. As they are in series,
it makes no difference to the overall load impedance, however, the new arrangement 
allows us to obtain the resistor voltage directly instead of having to rely on a 
differential voltage obtained through the post processor. 

Another transient analysis is performed, this time plotting the voltage across one of 
the load resistors; namely node 4. The result is shown in Figure 9.13. The peak of 
this waveform is measured to be 271.5 volts, or about 192 volts RMS. Squaring this 
and dividing by 40 Ω yields a little over 921 watts per leg, for a total of about 2765 
watts, as expected.  
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Figure 9.11
The three load voltages 
simulated from Figure 9.10.
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Figure 9.12
One of the line voltages 
simulated from Figure 9.10.

Figure 9.13
Simulated voltage across one  
of the load resistors in      
Figure 9.10.



Heterogeneous SystemsHeterogeneous Systems

Systems configured as delta-to-Y and Y-to-delta appear to be a bit more complex 
than homogeneous systems. We shall refer to these as heterogeneous systems as the 
structures of the generator and load are of opposite kind. Examples are shown in 
Figures 9.14 and 9.15, respectively.

These systems are not nearly so difficult as some people think; all you have to do is 
remember statements 9.1 and 9.2. Indeed, the summation is worth repeating here:

For delta configurations (generator or load), the phase voltage is equal to the
line voltage while the line current is larger than the phase current by √3. For 
Y configurations, the phase current is equal to the line current while the line 
voltage is √3 larger than the phase voltage.

You can think of analyzing these systems as a two-step process. First, determine the 
line voltage and current from either the generator or load; and second, transition 
from the line to the other side (load or generator). If confusion sets in, remember that
power generated must equal power dissipated or delivered.

In Figure 9.14, the line voltage equals the generator phase voltage. The load is Y-
connected, so each leg sees the line voltage divided by √3. Based on this, each leg of
the load current can be computed. Note that the line current equals the load current. 
The generator phase current will be the line current divided by √3. 
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In Figure 9.15, the line voltage equals √3 times the generator phase voltage. The 
load is delta-connected, so each leg sees the line voltage. Knowing this, each leg of 
the load current can be computed. Also, the line current equals the generator phase 
current, and the load phase current will equal the line current divided by √3. 

Example 9.4

A delta-Y system like the one shown in Figure 9.14 has a generator phase 
voltage of 230 volts RMS at 50 Hz. If the load is 2000° Ω, determine the 
generator phase current, the line voltage, the load phase voltage, the load 
phase current and the total power delivered to the load.  

The generator is delta connected so the line voltage equals the generator 
phase voltage, or 230 volts. The load, being Y-connected, will see a phase 
voltage that is reduced by a factor of √3. 

vload =
v line

√3

vload =
230 V
√3

vload ≈ 132.8V RMS

We can use Ohm's law to determine the load phase current.

i load =
v phase

Z load

i load =
132.8 V

200 0°Ω
i load ≈0.664 A RMS

Being Y-connected, the line current must be the same as the load phase 
current, or 0.664 amps. For delta connections, the line current is √3 times 
larger than the phase current, therefore the generator phase current must be 
√3 times smaller.

igen =
i line

√3

igen =
0.664 A

√3
igen ≈ 0.383A RMS

The load is purely resistive and we have RMS values so the total power can 
be found via power law (apparent power equals true power in this case). 
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P total = 3×i load
2×R

P total = 3×(0.664 A)2×200Ω

P total = 264 W

As a crosscheck, the power generated is:

P total = 3×igen×v gen

P total = 3×0.383 A×230 V
P total = 264 W

Power generated equals power dissipated.

Example 9.5

A Y-delta system like the one shown in Figure 9.15 has a generator phase 
voltage of 100 volts RMS at 60 Hz. If the load has a magnitude of 50 Ω with 
a lagging power factor of 0.8, determine the generator phase current, the line
voltage, the load phase voltage, the load phase current and the total true 
power delivered to the load.  

The Y-connected generator creates a line voltage equal to the generator 
phase voltage times √3. This is also the load phase voltage as it is delta-
connected.

vline = √3×v phase

vline = √3×100 V
vline ≈ 173.2 V RMS

The delta-connected load will see a phase voltage that is the same as the line
voltage, or 173.2 volts. From this we can determine the load current. 
 

i load =
v phase

Z load

i load =
173.2 V

50 Ω
i load ≈3.464 A RMS

As the load is delta-connected, the line current is the load current times √3. 
The generator phase current will be the same as the line current.

i line = √3×i phase

i line = √3×3.464 A
i line = 6 A RMS
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The true load power can be found several ways. First, we can use the i2 R 
form. To do this we need to find the resistive portion of the load. Recall that 
the power factor is equal to cosine θ. Therefore the impedance angle is:

θ = cos−1 PF
θ = cos−1 0.8
θ≈ 36.9°

The real part is:

R = Z cosθ
R = 50Ωcos36.9°
R = 40 Ω

Alternately, we could've just multiplied Z by PF to obtain this. Continuing:
 

P total = 3×i load
2×R

P total = 3×(3.464 A)2×40Ω

P total = 1440 W

We could also find the apparent power and use the power factor.

P total = 3×v load×iload PF
P total = 3×173.2 V×3.464 A×0.8
P total = 1440 W

As a crosscheck, compare the power dissipated to the power generated.

P total = 3×v gen×i gen×PF
P total = 3×100 V×6A×0.8
P total = 1440 W

9.3 Power Factor Correction9.3 Power Factor Correction

As we saw in earlier work, reactive loads demand higher currents than purely 
resistive loads for a given true load power. The ratio between apparent power, S, and
true power, P, is the power factor, PF. Power factor may also be computed as the 
cosine of the load impedance angle. This situation remains for three-phase systems. 
If a balanced three-phase load has a large reactive component, the line current and 
generator phase current will be higher than necessary. The solution to this is power 
factor correction; the introduction of reactive elements that will counterbalance the 
reactive power of the load, essentially providing an opposing current such that the 
reactive currents cancel. 
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In three-phase systems the situation is potentially complicated by the fact that the 
load is split into three parts and can be either Y-connected or delta-connected. 

The process for three phase is essentially the same as it is for single phase, but with 
a couple slight twists. The first course of action is to determine the reactive power, 
Q, of the load. As we are dealing with balanced loads, it is usually easiest to just 
concentrate on a single leg. There are two basic possibilities. First, if the load 
reactance is known, it is a simple matter to determine the reactive power by finding 
the load phase current, squaring it, and then multiplying by the load reactance. In 
contrast, if the load is described in terms of a power factor, the apparent power can 
be computed from the generator phase voltage and current, and then the power 
factor can be used to find the reactive power (e.g., finding true power and then using
the Pythagorean theorem). Once the reactive power is known, the required reactance
can be found using power law and either the phase voltage or current. Finally, the 
reactance value is used to determine the component value. As many loads are 
inductive, the compensating component usually will be capacitive. There will three 
units, one for each leg of the load.

For practical purposes, the compensating device is placed across the load terminals 
rather than in series with it. This is true whether the load is Y-connected or delta-
connected. In other words, the compensating devices always will be placed in a delta
configuration. This is true even if the load is Y-connected. We shall look at both 
situations in the next two examples.

Example 9.6

The Y-delta system shown in Figure 9.16 has a generator phase voltage of 
120 volts RMS at 60 Hz. Determine the power factor, the generator phase 
current, and the total real and apparent power delivered to the load. Also 
determine components to correct the power factor and the new generator 
phase current.
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Figure 9.16
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First, the power factor is the cosine of the impedance angle. At 60 Hz, the 
reactance of the 100 mH inductor is −j37.7 Ω. This is in series with the 
resistance for a load impedance of 100 −j37.7 Ω or 106.920.66° per leg. 
The cosine of this angle is 0.9357.

The voltage across each leg of the load will equal the line voltage.

vline = √3×v phase

vline = √3×120 V
vline ≈ 207.8 V RMS

This will produce a load phase current magnitude of:

i load =
v phase

Z load

i load =
207.8 V
106.9Ω

i load ≈1.944 A RMS

Now we can find the load powers.

S = 3×v phase×i phase

S = 3×207.8 V×1.944 A
S ≈ 1212 VA

P = S×PF
P = 1212 VA×0.9357
P ≈ 1134 W

Q = S sinθ
Q = 1212 VAsin 20.66 °
Q ≈ 427.6 VAR

The load is inductive so the compensation components need to be 
capacitors. Each capacitor needs to create 427.6/3 VAR, or 142.5 VAR. The 
required reactance is:

X C =− j
v phase

2

Q

X C =− j
(207.8V )

2

142.5 VAR
X C ≈− j 303Ω

And finally, the capacitance value:
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C =
1

2π f X C

C =
1

2π60 Hz 303Ω
C ≈8.75μ F

These capacitors would be placed directly in parallel with each leg of the 
load and should result in a reduction of the generator and line currents.

Computer SimulationComputer Simulation

To see the effect of power factor correction, the circuit used in Example 9.6 is 
captured in a simulator, as illustrated in Figure 9.17. The goal here is to show the 
reduction in supplied current. To facilitate this, the normal Y-connected three-phase 
source is not used. Instead, three individual sine sources are used, each with a proper
phase shift. A small 1 Ω sensing resistor is inserted in series with one of the sources. 
The voltage across this resistor is easily measured (node 7) and serves as a proxy for
the generator phase current. Compared to the sizes of the other components, this 
extra resistance will have minimal impact on overall circuit behavior, perhaps 
shifting current values around 1% or so. Reducing the resistance to 0.1 Ω will reduce
errors to negligible levels, but 1 Ω is convenient as no scaling is needed and will be 
sufficient to show the effect of power factor correction on source current.

A transient simulation is run on the circuit, plotting the voltage at node 7. This is 
shown in Figure 9.18. Due to the 1 Ω sensing resistance, the voltage value is the 
same as the current value in amps. The peak value of the current is approximately 
4.7 amps. This agrees with the calculated value of 4.76 amps (1.944 amps RMS 
times √2 times √3). Now that a baseline for the current has been established, we turn
our attention to the modified version of the circuit with power factor correction.
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Figure 9.17
Circuit of Figure 9.16 in a 
simulator.



The three power factor correction capacitors are added in parallel with the existing 
load legs (i.e., from line to line). This is illustrated in Figure 9.19. 

The transient simulation is repeated. The results are shown in Figure 9.20. The peak 
current in this version of the circuit is approximately 4.4 amps. Theoretically, the 
current should be scaled by the power factor, or 0.9357. As previously calculated, 
the value of the original generator phase current is 4.76 amps peak. Multiplying that 
by the power factor yields approximately 4.45 amps peak. The small deviation 
between this result and the simulation is due to the effect of the 1 Ω sensing resistor. 
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Figure 9.18
Generator phase current for the
original circuit of Figure 9.17.

Figure 9.19
Power factor corrected circuit 
of Figure 9.16 in a simulator.



Example 9.7

The Y-Y system shown in Figure 9.21 has a generator phase voltage of 230 
volts RMS at 50 Hz. The load draws 900 VA with a power factor of 0.85 
lagging. Determine the generator phase current. Also determine components 
to correct the power factor and the new generator phase current once the 
system is corrected.
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Figure 9.20
Generator phase current for the
power factor corrected circuit 
of Figure 9.19.

Figure 9.21
Circuit for Example 9.7.



We're looking for the generator phase current so let's break this down to a 
single leg, first. The total apparent power, S, is 900 VA. For a single leg that's
300 VA. This is a Y-Y system so the generator phase current and voltage are 
the same as the load phase current and voltage. The current can be found via 
the apparent power.

i =
S
v

i =
300 VA

230 V RMS
i ≈ 1.304 A RMS

Given a power factor of 0.85, we can determine the real and reactive 
powers.

P = S×PF
P = 300 VA×0.85
P = 255 W

Q = √S 2
−P2

Q = √(300 VA)2−(255 W)2

Q ≈ 158 VAR inductive

For power factor correction, we need 158 VAR capacitive per leg to 
counteract this. These capacitors will be placed across the load terminals in a
delta configuration. As such, they will see the line voltage. For a Y-
connected generator, the line voltage is the phase voltage times √3. The 
result here is 230 volts times √3, or 398.4 volts RMS. From this we may 
determine the required reactance.

X C =− j
v phase

2

Q

X C =− j
(398.4 V )

2

158 VAR
X C ≈− j 1004.6Ω

The corresponding capacitance value is:

C =
1

2π f X C

C =
1

2π50Hz 1004.6Ω
C ≈3.17μ F
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Computer SimulationComputer Simulation

In Example 9.7 we computed the generator phase current to be 1.304 amps RMS, 
which is equivalent to 1.844 amps peak. If the corrected circuit is proper, then the 
apparent power should fall to the real power, or 255 watts. The resulting generator 
phase current should be this power divided by the generator phase voltage, 255/230, 
or 1.109 amps RMS. This is equivalent to 1.568 amps peak. (Alternately, we could 
multiply the original current by the power factor because the voltage is constant.)

To verify the effectiveness of the circuit modification, we start by capturing the 
circuit in a simulator, as shown in Figure 9.22.

As in the prior example, the source is built from three discrete sine generators at 
appropriate phases. Beneath one of them, a 1 Ω current sensing resistor is added 
(node 7). This value should produce no more than about 1% deviation as it is a full 
two orders of magnitude smaller than the other circuit resistances. 

An interesting question for the sharp-eyed observer is how the load resistor and 
inductor values were obtained. This turns out to be not so difficult. We have already 
computed the true and reactive powers for each leg. We also know the load phase 
voltage (it's the same as the generator, 230 volts, as it's a Y-Y connection). 
Therefore, we can find the R and XL values as we have already computed the load 
current and can use this to determine the load impedance, Z. The power factor is 
known, and from this the real and reactive parts can be deduced.

Z =
v phase

i

Z =
230 V

1.304 A
Z ≈176Ω

This is the magnitude. For the sake of completeness, the angle is the arccosine of the
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Figure 9.22
Generator phase current for the
original circuit of Figure 9.21.



power factor, or cos-1(0.85), which is 31.8 degrees. The fastest way to determine R is
to recognize that the real portion is the impedance magnitude times the power factor:

R = Z×PF
R = 176Ω×0.85
R ≈150Ω

The reactive portion can be found via the Pythagorean theorem or by using the 
power relation. Then we apply the reactance formula to find the inductance.

X L =
Q

i2

X L =
158 VAR

(1.304 A RMS)2

X L ≈ 92.9Ω

L =
X L

2 π f

L =
92.9Ω

2π50 Hz
L ≈296 mH

The result of a transient analysis is shown in Figure 9.23. The measured peak phase 
current is 1.837 amps. This compares nicely with the expected value of 1.844 amps.
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Figure 9.23
Generator phase current for the
original circuit of Figure 9.22.



For the comparison, the power factor correction capacitors are added in a delta 
configuration (across the lines) as shown in Figure 9.24. 

Another simulation is run, the result shown in Figure 9.25. The peak current has 
decreased to 1.56 amps. This is just slightly lower than the expected value of 1.568 
amps peak. Again, this small deviation is due to the effect of the sense resistor.
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Figure 9.24
Power factor corrected circuit 
of Figure 9.21 in a simulator.

Figure 9.25
Generator phase current for the
power factor corrected circuit 
of Figure 9.24.



9.4 Summary9.4 Summary

Polyphase systems can be thought of as a group of individual sources of the same 
magnitude that are synced together and where the load is similarly divided into 
sections or legs. By spreading out the source currents across the waveform's period, 
a smooth application of power to the load can be achieved. Also, for the same line 
current, more power can be delivered to the load than that of a single phase system. 
Loads can be balanced or unbalanced. A balanced load means that all legs of the 
load exhibit an identical impedance. Thus, the currents coming out of the source will
be the same except for the phase shifts spreading them across a single period. While 
any number of phases is possible, three-phase systems are popular as they deliver 
the benefits of polyphase while limiting complexity.

A three-phase source produces currents that are 120 degrees apart. That is, if the first
signal is taken as the reference, or 0°, then the other two are at 120° and 240°. Both 
the source and the load can be configured in one of two ways: delta or Y. This makes
four possible combinations for the source-load connection; namely Y-Y, delta-delta, 
Y-delta, and delta-Y. In a Y-Y connection the source phase current and load current 
will be the same. The voltage from one line to another will be √3 times larger than 
the phase voltage. In a delta-delta connection the phase and line voltages will be the 
same, but the line current will be √3 times larger than the phase current of the 
generator or load. In delta-Y and Y-delta connections, the source and load no longer 
match configuration so neither the phase voltages nor currents are the same. For the 
portion that is Y-connected, the line current and phase current will be the same. For 
the portion that is delta-connected, the line voltage and phase voltage will be the 
same. For those configurations, the other parameter (voltage or current) will be 
scaled by √3. 

In a system with a balanced load, the system power will simply be three times the 
power of one leg. If the load has a non-negligible phase angle, power factor 
correction can be used to reduce the required line current. The compensating items 
are arranged in a delta configuration, even if the load is Y-connected.

Review QuestionsReview Questions

1. Describe the advantages and disadvantages of polyphase versus single phase
systems.

2. Define the terms delta-connected and Y-connected.
3. How are line and load voltages related for Y-connected loads? 
4. How are line and load currents related for Y-connected loads? 
5. How are line and load voltages related for delta-connected loads?
6. How are line and load currents related for delta-connected loads?
7. Describe a practical connection for power factor correction of a Y-connected

load.
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9.5 Exercises9.5 Exercises

Unless specified otherwise, assume generator frequencies are 60 Hz for all 
problems.

AnalysisAnalysis

1. As depicted in Figure 9.26, a three-phase delta-connected generator feeds a 
delta-connected load. The generator phase voltage is 120 volts and the load 
consists of three legs of 10 Ω each. Find the voltage across each load leg, 
the line current through the wires connecting the load to to the generator and
the power drawn by the load.

2. Referring to the delta-delta system of Figure 9.26, if the generator phase 
voltage is 230 volts and the load is balanced with each leg at 2 Ω, determine 
the line voltage, line current, generator phase current and load current.

3. The system of Figure 9.27 shows a three-phase Y-connected generator 
feeding a Y-connected load. If the generator phase voltage is 120 volts and 
the load consists of three legs of 20 Ω each, find the line voltage, the line 
current, voltage across each load leg and the total power drawn by the load.
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4. Referring to Figure 9.27, if the generator phase voltage is 230 volts and the 
load is balanced with each leg at 12 Ω, determine the line voltage, line 
current, generator phase current, load current, load voltage and total load 
power.

5. As depicted in Figure 9.28, a three-phase delta-connected generator feeds a 
Y-connected load. The generator phase voltage is 120 volts and the load 
consists of balanced legs of 5 Ω each. Find the voltage across each load leg, 
the line current, the line voltage, the generator phase current and the total 
load power.

6. Referring to Figure 9.28, if the generator phase voltage is 400 volts and the 
load is balanced with each leg at 10 Ω, determine the line voltage, line 
current, generator phase current, load current and the voltage across each 
load leg.

7. The system of Figure 9.29 shows a three-phase Y-connected generator 
feeding a delta-connected load. If the generator phase voltage is 120 volts 
and the load consists of three legs of 60 Ω each, find the line voltage, the 
line current, voltage across each load leg and the total power drawn by the 
load.

8. Referring to the Y-delta system of Figure 9.28, if the generator phase voltage
is 120 volts and the load is balanced with each leg at 20 Ω, determine the 
line voltage, line current, generator phase current, load current, the voltage 
across each load leg and the total load power.
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9. A three-phase delta-connected generator feeds a delta-connected load 
consisting of three legs of 10 Ω in series with j4 Ω of inductive reactance, as
shown in Figure 9.30. If the line voltage is 208 volts, find the voltage across 
each load leg, the current through the wires connecting the load to to the 
generator, and the apparent and real powers drawn by the load.

10. Given the delta-delta system of Figure 9.30, if the generator phase voltage is
120 volts and the load is balanced with each leg at 20 + j10 Ω, determine the
line voltage, line current, generator phase current, load current, the voltage 
across each load leg, and the total real and apparent load powers.

11. A three-phase Y-connected generator feeds a Y-connected load consisting of 
three legs of 10 Ω in series with j4 Ω of inductive reactance, as shown in 
Figure 9.31. If the line voltage is 208 volts, find the voltage across each load
leg, the line current, and the apparent and real powers drawn by the load.

12. Given the Y-Y system of Figure 9.31, if the line voltage is 400 volts and the 
load is balanced with each leg at 100 + j20 Ω, determine the generator phase
voltage, line current, generator phase current, load current, the voltage 
across each load leg, and the total real and apparent load powers.
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13. The three-phase system of Figure 9.7 uses a Y-connected generator feeding a
delta-connected load. The load consists of three legs of 40 Ω in series with 
j30 Ω of inductive reactance, as shown in Figure 9.32. If the generator phase
voltage is 230 volts, find the line voltage, the voltage across each load leg, 
the line current, the load current, and the apparent and real powers drawn by
the load.

14. Given the Y-delta system of Figure 9.32, if the line voltage is 400 volts and 
the load is balanced with each leg at 80 + j20 Ω, determine the generator 
phase voltage, line current, generator phase current, load current, the voltage
across each load leg, and the total real and apparent load powers.

15. A 208 three-phase delta-connected generator feeds a Y-connected load 
consisting of three legs of 10 Ω in series with j4 Ω of inductive reactance as 
shown in Figure 9.33. Find the voltage across each load leg, the current 
through the wires connecting the load to to the generator, and the apparent 
and real powers drawn by the load.

16. Given the delta-Y system of Figure 9.33, if the line voltage is 400 volts and 
the load is balanced with each leg at 120 + j30 Ω, determine the line current,
generator phase current, load current, the voltage across each load leg, and 
the total real and apparent load powers.
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17. A 120 volt three-phase delta-connected generator feeds a delta-connected 
load consisting of three legs of 75 Ω in series with −j10 Ω of capacitive 
reactance as shown in Figure 9.34. Find the voltage across each load leg, the
current through the wires connecting the load to to the generator, and the 
apparent and real powers drawn by the load.

18. A three-phase Y-connected generator feeds a Y-connected load consisting of 
three legs of 150 Ω in series with −j20 Ω of capacitive reactance as shown in
Figure 9.35. If the generator phase voltage is 120 volts, find the line voltage,
the voltage across each load leg, the line current, and the apparent and real 
powers drawn by the load.

DesignDesign

19. Using the delta-delta system of problem 9 and assuming the source 
frequency is 60 Hz, determine appropriate component values to place in 
parallel with each load leg in order to shift the power factor to unity.  

20. Using the Y-Y system of problem 11 and assuming the source frequency is 
60 Hz, determine appropriate component values to place in parallel with 
each load leg in order to shift the power factor to unity.  
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ChallengeChallenge

21. Using the Y-Y system of problem 11 and assuming the source frequency is 
60 Hz, determine appropriate component values to be added to the load in 
order to shift the power factor to unity. These new components should be in 
a delta configuration.

SimulationSimulation

22. Use a transient analysis to verify the phase and line voltage phase 
relationships in problem 1. 

23. Use a transient analysis to verify the results computed for problem 15. 

24. Use a transient analysis to verify the design solution to problem 19. This can
be achieved by ensuring that the voltage and current in each load leg (with 
added correction components) are in phase.

25. Use a transient analysis to verify the design solution to problem 20. This can
be achieved by ensuring that the voltage and current in each load leg (with 
added correction components) are in phase.
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NotesNotes
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10 10 Decibels and Bode PlotsDecibels and Bode Plots

10.0 Chapter Learning Objectives10.0 Chapter Learning Objectives

After completing this chapter, you should be able to: 

• Convert between ordinary and decibel based power and voltage gains. 
• Utilize decibel-based voltage and power measurements during circuit analysis. 
• Define and graph a general Bode plot. 
• Detail the differences between lead and lag networks, and graph Bode plots for each. 
• Combine the effects of several lead and lag networks together in order to determine a system Bode plot. 

10.1 Introduction10.1 Introduction

This chapter introduced two related items; the decibel and Bode plots. The decibel measurement scheme is in 
wide use, particularly in the fields of audio and communications. We will be examining its advantages over the 
ordinary system of measurement used up to now and how to convert values of one form into the other. One of 
the more important parameters of a circuit is its frequency response, that is, the way in which the circuit 
responds to input signals over a range of frequencies. While we have investigated this to some extent in prior 
work, in this chapter we shall take it to its logical conclusion, namely the Bode plot. A Bode plot is, in fact, a 
pair of plots; one of relative signal magnitude or gain with respect to frequency and a second detailing the phase 
response with respect to frequency. Bode plots are of particular importance in the study of circuits such as 
amplifiers and filters, as well as in systems that make use of negative feedback. The gain magnitude plot makes 
use of a decibel scale and thus it makes sense to begin our study looking at the decibel system: specifically how 
it is defined and its practical use.

10.2 The Decibel10.2 The Decibel

Most people are familiar with the term “decibel” in reference to sound pressure. It’s not uncommon to hear 
someone say something such as “It was 110 decibels at the concert last night and my ears are still ringing.” This 
popular use is somewhat inaccurate, but does show that decibels indicate some sort of quantity or relative level; 
in this case, sound pressure level. 

Decibel Representation of Power and Voltage Gains Decibel Representation of Power and Voltage Gains 

In its simplest form, the decibel is used to measure system gain, such as power or voltage gain, where gain is 
simply the ratio of an output signal to an input signal. For an amplifying circuit, the gain would be greater than 
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one, but for purely passive systems it will likely be fractional (i.e., the output 
quantity is smaller than the input quantity). For example, a simple voltage divider 
might be said to have a “gain” of 0.2, or some such, meaning that the output signal is
only 20% of the input signal. Unlike the ordinary gain measurements, the decibel 
form is logarithmic. Because of this, it can be very useful for showing ratios of 
change, as well as absolute change. The base unit is the Bel, named after Alexander 
Graham Bell, the noted American scientist and inventor. To convert an ordinary gain
to its Bel counterpart, just take the common log (base 10) of the gain. In equation 
form: 

Bel gain = log10( ordinary gain ) (10.1)

Note that on most hand calculators common log is denoted as “log” while the natural
log is given as “ln”. Unfortunately, some programming languages use “log” to 
indicate natural log and “log10” for common log. More than one student has been 
bitten by this bug, so be forewarned! As an example, if an amplifier circuit produces 
an output power of 200 milliwatts for an input of 10 milliwatts, we would normally 
say that it has a power gain of: 

G=
Pout

P i n

G=
200 mW
10 mW

G=20

For the Bel version, just take the log of this result. 

G '= log10G
G '= log1020
G '=1.301

The Bel gain is 1.3 Bels. The term “Bels” is not a unit in the strict sense of the word 
(as in “watts”), but is simply used to indicate that this is not an ordinary gain. In 
contrast, ordinary power and voltage gains are sometimes given units of W/W and 
V/V to distinguish them from Bel gains. Also, note that the symbol for Bel power 
gain is G' and not G. All Bel gains are denoted with the following prime (’) notation 
to avoid confusion. Because Bels tend to be rather large, we typically use one-tenth 
of a Bel as the norm. The result is the decibel (one-tenth Bel). To convert to decibels,
simply multiply the number of Bels by 10. Our gain of 1.3 Bels is equivalent to 13 
decibels. The units are commonly shortened to dB. Consequently, we may say: 

G '=10 log10G (10.2)

Where the result is in dB.
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At this point, you may be wondering what the big advantage of the decibel system 
is. To answer this, recall a few log identities. Normal multiplication becomes 
addition in the log system, and division becomes subtraction. Likewise, powers and 
roots become multiplication and division. Because of this, two important things 
show up. First, ratios of change become constant offsets in the decibel system, and 
second, the entire range of values diminishes in size. The result is that a very wide 
range of gains may be represented within a fairly small scope of values, and the 
corresponding calculations can become quicker. 

There are a couple of dB values that are useful to remember, and are illustrated in 
Figure 10.1. With the aid of your calculator, it is very easy to show the following:

Factor
dB Value using

G’= 10 log10  G

1 0 dB 
2 3.01 dB 
4 6.02 dB 
8 9.03 dB 

10 10 dB 

We can also look at fractional factors (i.e., losses instead of gains, Figure 10.2): 

Factor dB Value
0.5 −3.01 dB 

0.25 −6.02 dB 
0.125  −9.03 dB 

0.1 −10 dB 

If you look carefully, you will notice that a doubling is represented by an increase of 
approximately 3 dB. A factor of 4 is in essence, two doublings. Therefore, it is 
equivalent to 3 dB + 3 dB, or 6 dB. Remember, because we are using logs, 
multiplication turns into simple addition. In a similar manner, a halving is 
represented by approximately −3 dB. The negative sign indicates a reduction. To 
simplify things a bit, think of factors of 2 as ±3 dB, the sign indicating whether you 
are increasing (multiplying), or decreasing (dividing). As you can see, factors of 10 
work out to a very convenient 10 dB. By remembering these two factors, you can 
often estimate a dB conversion without the use of your calculator. For instance, we 
could rework our initial conversion problem as follows: 

• The amplifier has a gain of 20.
• 20 can be written as 2 times 10.
• The factor of 2 is 3 dB, the factor of 10 is 10 dB.
• The answer must be 3 dB + 10 dB, or 13 dB.

Time for a few examples.
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Example 10.1 

An amplifier has a power gain of 800. What is the decibel power gain? 

G '=10 log10G
G '=10 log10800
G '=10×2.903
G '=29.03dB

 

We could also use our estimation technique:

• G = 800 = 8∙102

• 8 is equivalent to 3 factors of 2, or 2∙2∙2, and can be expressed as 3 dB +
3 dB + 3 dB, which is, of course, 9 dB 

• 102 is equivalent to 2 factors of 10, or 10 dB + 10 dB = 20 dB. 
Alternately, the power of 2 literally represents 2 Bels, and thus 20 dB. 

• The result is 9 dB + 20 dB, or 29 dB 

Note that if the leading digit is not a power of 2, the estimation will not be 
as precise. For example, if the gain is 850, you know that the decibel gain is 
just a bit over 29 dB. You also know that it must be less than 30 dB 
(1000=103 which is 3 factors of 10, or 30 dB.) As you can see, by using the 
dB form, you tend to concentrate on the magnitude of gain, and not so much
on trailing digits. 

Example 10.2 

An attenuator reduces signal power by a factor of 10,000. What is this loss 
expressed in dB? 

G '=10 log10
1

10,000
G '=10×(−4 )
G '=−40 dB

    

By using the approximation, we can say, 

1
10,000

=10−4  

The negative exponent tells us we have a loss (negative dB value), and 4 
factors of 10 (i.e., 4 Bels). 
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G '= −10 dB −10dB −10dB −10 dB 
G '= −40dB

 

Remember, if an increase in signal is produced, the result will be a positive 
dB value. A decrease in signal will always result in a negative dB value. A 
signal that is unchanged indicates a gain of unity, or 0 dB. 

To convert from dB to ordinary form, just invert the steps; that is, divide by ten and 
then take the antilog. 

G= log10
−1 G'

10
 (10.3)

On most hand calculators, base 10 antilog is denoted as 10x. In most computer 
languages, you just raise 10 to the appropriate power, as in G = 10.0**(Gprime / 
10.0) (Python), or use an exponent function, as in pow(10.0, Gprime / 10.0) (C). 

Example 10.3 

An amplifier has a power gain of 23 dB. If the input is 1 mW, what is the 
output? 

In order find the output power, we need to find the ordinary power gain, G. 

G= log10
−1 G '

10

G=log10
−1 23

10
G=199.5

  

Therefore, Pout =199.5 ∙ 1 mW, or 199.5 mW 

You could also use the approximation technique in reverse. To do this, break
up the dB gain in 10 dB and 3 dB chunks: 

23dB=3dB+10dB+10dB  

Now replace each chunk with the appropriate factor, and multiply them 
together (remember, when going from log to ordinary form, addition turns 
into multiplication.) 

3dB=2X ,10dB=10X, so,
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G=2×10×10
G=200

  

While the approximation technique appears to be slower than the calculator, practice
will show otherwise. Being able to quickly estimate dB values can prove to be a 
very handy skill in the electronics field. This is particularly true in larger, multi-stage
designs. 

Example 10.4 

A three-stage amplifier has gains of 10 dB, 16 dB, and 14 dB per section. 
What is the total dB gain? 

Because dB gains are a log form, just add the individual stage gains to arrive
at the system gain. 

G ' total =G' 1+G ' 2+G ' 3

G ' total =10dB+16 dB+14dB
G ' total =40 dB

As you may have noticed, all of the examples up to this point have used power gain 
and not voltage gain. You may be tempted to use the same equations for voltage 
gain. In a word, don’t. If you think back for a moment, you will recall that power 
varies as the square of voltage. In other words, a doubling of voltage will produce a 
quadrupling of power. If you were to use the same dB conversions, a doubling of 
voltage would be 3 dB, yet, because the power has quadrupled, this would indicate a
6 dB rise. Consequently, voltage gain (and current gain as well) are treated in a 
slightly different fashion. We would rather have our doubling of voltage work out to 
6 dB, so that it matches the power calculation. The correction factor is very simple. 
Because power varies as the second power of voltage, the dB form should be twice 
as large for voltage (remember, exponentiation turns into multiplication when using 
logs). Applying this factor to equation 10.2 yields:

A 'v=20 log10 Av
(10.4)

Be careful though, the Bel voltage gain only equals the Bel power gain if the input 
and output impedances of the system are matched (you may recall from your other 
work that it is quite possible to design a circuit with vastly different voltage and 
power gains). If we were to recalculate our earlier table of common factors, we 
would find that a doubling of voltage gain is equivalent to a 6 dB rise, and a ten fold 
increase is equivalent to a 20 dB rise, twice the number of decibels of their power 
gain counterparts. 
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Note that current gain may be treated in the same manner as voltage gain (although 
this is less commonly done in practice). 

Example 10.5 

A circuit has an output signal of 2 V for an input of 50 mV. What is A'v? 
First find the ordinary gain.

 Av=
2

0.05
=40

Now convert to dB form.

A 'v=20 log10 40
A 'v=20×1.602
A 'v=32.04 dB

  

The approximation technique yields 40=2∙2∙10, or 6 dB + 6 dB + 20 dB, or 
32 dB.

To convert A'v to A, reverse the process.
 

Av=log10
−1 A 'v

20
(10.5)

Example 10.6

An amplifier has a gain of 26 dB. If the input signal is 10 mV, what is the 
output? 

Av=log10
−1 A' v

20

Av=log10
−1 26

20
Av=19.95
V out= Av V i n

V out=19.95×10 mV
 

The final point to note in this section is that, as in the case of power gain, a negative 
decibel value indicates a loss. Therefore, a 2:1 voltage divider would have a gain of 
−6 dB. 
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Signal Representation in dBW and dBV Signal Representation in dBW and dBV 

As you can see from the preceding section, it is possible to spend considerable time 
converting between decibel gains and ordinary voltages and powers. Because the 
decibel form does offer advantages for gain measurement, it would make sense to 
use a decibel form for power and voltage levels as well. This is a relatively 
straightforward process. There is no reason why we can’t express a power or voltage
in a logarithmic form. Because a dB value just indicates a ratio, all we need to do is 
decide on a reference (i.e., a comparative base for the ratio). For power 
measurements, a likely choice would be 1 watt. In other words, we can describe a 
power as being a certain number of dB above or below 1 watt. Positive values will 
indicate powers greater than 1 watt, while negative values will indicate powers less 
than 1 watt. In general equation form: 

P '=10log 10
P

reference
(10.6)

The answer will have units of dBW, that is, decibels relative to 1 watt. 

Example 10.7 

A power amplifier has a maximum output of 120 W. What is this power in 
dBW? 

P '=10log 10
P

1 Watt

P '=10log 10
120 W

1W
P '=20.8 dBW

   

 
There is nothing sacred about the 1 watt reference, short of its convenience. We 
could just as easily choose a different reference. Other common reference points are 
1 milliwatt (dBm) and 1 femtowatt (dBf). Obviously, dBf is used for very low signal
levels, such as those coming from an antenna. dBm is in very wide use in the 
communications industry. To use these other references, just divide the given power 
by the new reference. 

Example 10.8 

A small personal audio music player delivers 200 mW to its headphones. 
What is this output power in dBW, and in dBm? 

For an answer in units of dBW, use the 1 watt reference.
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P '=10 log10
P

1Watt

P '=10 log10
200 mW

1W
P '=−7dBW

 

For units of dBm, use a 1 milliwatt reference.

P '=10 log10
P

1Watt

P '=10 log10
200 mW
1 mW

P '=23 dBm

200 mW, −7 dBW, and 23 dBm are three ways of saying the same thing. 
Note that the dBW and dBm values are 30 dB apart. This will always be 
true, because the references are a factor of 1000 (30 dB) apart. 

In order to transfer a dBW or similar value into watts, reverse the process. 

P=log10
−1 P '

10
×reference  (10.7)

Example 10.9 

A studio microphone produces a 12 dBm signal while recording normal 
speech. What is the output power in watts? 

P=log10
−1 P '

10
×reference

P=log10
−1 12dBm

10
×1mW

P=15.8mW=0.0158W

 

For voltages, we can use a similar system. A logical reference is 1 V, with the 
resulting units being dBV. As before, these voltage measurements will use a 
multiplier of 20 instead of 10. 

V '=20log10
V

reference
(10.8)
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Example 10.10 

A test oscillator produces a 2 volt signal. What is this value in dBV? 

V '=20log10
V

reference

V '=20log10
2 V
1V

V '= 6.02dB

 

 
When both circuit gains and signal levels are specified in decibel form, analysis can 
be very quick. Given an input level, simply add the gain to it in order to find the 
output level. Given input and output levels, subtract them in order to find the gain. 

Example 10.11 

A computer hard drive read/write amplifier exhibits a gain of 35 dB. If the 
input signal is −42 dBV, what is the output signal? 

V 'out=V ' i n+A' v

V 'out=−42 dBV+35dB
V 'out=−7dBV

 

Note that the final units are dBV and not dB, thus indicating a voltage and 
not merely a gain. 

Example 10.12 

A guitar power amp needs an input of 20 dBm to achieve an output of 25 
dBW. What is the gain of the amplifier in dB? 

First, it is necessary to convert the power readings so that they share the 
same reference unit. Because dBm represents a reference 30 dB smaller than
the dBW reference, just subtract 30 dB to compensate. 

20 dBm=−10 dBW
 
G '=P 'out−P ' i n

G '=25dBW−(−10 dBW)
G '=35 dB
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Note that the units are dB and not dBW. This is very important! Saying that 
the gain is “so many” dBW is the same as saying the gain is “so many” 
watts. Obviously, gains are “pure” numbers and do not carry units such as 
watts or volts. 

The usage of a dB-based system is shown graphically in Figure 10.3. Note how the 
stage gains are added to the input signal to form the output. Even large circuits can 
be quickly analyzed in this form. To make life in the lab even easier, it is possible to 
take measurements directly in dB form. By doing this, you need never convert while
troubleshooting a design. For general-purpose work, voltage measurements are the 
norm, and therefore a dBV scale is often used. 

Items Of Interest In The Laboratory Items Of Interest In The Laboratory 

When using a digital meter on a dBV scale it is possible to “underflow” the meter if 
the signal is too weak. This will happen if you try to measure around zero volts, for 
example. If you attempt to calculate the corresponding dBV value, your calculator 
will probably show “error”. The effective value is negative infinite dBV. The meter 
will certainly have a hard time showing this value! Another item of interest revolves 
around the use of dBm measurements. It is common to use a voltmeter to make dBm
measurements, in lieu of a wattmeter. While the connections are considerably 
simpler, a voltmeter cannot measure power. How is this accomplished then? Well, as
long as the circuit impedance is known, power can be derived from a voltage 
measurement. A common impedance in communication systems (such as recording 
studios) is 600 Ω, so a meter can be calibrated to give correct dBm readings by using
Power Law. If this meter is used on a non-600 Ω circuit, the readings will no longer 
reflect accurate dBm values (but will still properly reflect relative changes in dB). 

Finally, recalling the chapter introduction regarding “110 dB” concert levels, 
properly, that would read “110 dB-SPL”, referring to “Sound Pressure Level”. The 
reference level corresponding to 0 dB-SPL is the quietest sound the average person 
can hear; the threshold of hearing (20 micropascals for young healthy humans). 
Thus, 110 dB-SPL refers to a sound pressure that is 110 dB greater than the threshold
of hearing. Typically, 1 dB represents a “just noticeable difference” in loudness for 
humans, although this depends on the precise frequency and sound pressure.
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10.3 Bode Plots10.3 Bode Plots

The Bode plot is a graphical response prediction technique that is useful for both 
circuit design and analysis. It is named after Hendrik Wade Bode, an American 
engineer known for his work in control systems theory and telecommunications. A 
Bode plot is, in actuality, a pair of plots: One graphs the signal gain or loss of a 
system versus frequency, while the other details the circuit phase versus frequency. 
Both of these items are very important in the design of well-behaved, optimal 
circuits. 

Generally, Bode plots are drawn with logarithmic frequency axes, a decibel gain 
axis, and a phase axis in degrees. First, let’s take a look at the gain plot. A typical 
gain plot is shown Figure 10.4. Remember, “gains” can be fractional, as with a 
voltage divider.

Note how the plot is relatively flat in the middle, or midband, region. The gain value
in this region is known as the midband gain. In purely passive circuits this value 
may be fractional (i.e., a negative dB value). At either extreme of the midband 
region, the gain begins to decrease. The gain plot shows two important frequencies, 
f1 and f2. f1 is the lower break frequency while f2 is the upper break frequency. The 
gain at the break frequencies is 3 dB less than the midband gain. These frequencies 
are also known as the half-power points, or corner frequencies. Normally, amplifiers 
are only used for signals between f1 and f2. The exact shape of the rolloff regions will
depend on the design of the circuit. For example, it is possible to design amplifiers 
with no lower break frequency (i.e., a DC amplifier), however, all amplifiers will 
exhibit an upper break. The break points are caused by the presence of circuit 
reactances, typically coupling and stray capacitances. The gain plot is a summation 
of the midband response with the upper and lower frequency limiting networks. 
Let’s take a look at the lower break, f1. 
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Lead Network Gain Response Lead Network Gain Response 

Reduction in low frequency gain is caused by lead networks. A generic lead network
is shown in Figure 10.5. It gets its name from the fact that the output voltage 
developed across R leads the input. At very high frequencies the circuit will be 
essentially resistive. Conceptually, think of this as a simple voltage divider. The 
divider ratio depends on the reactance of C. As the input frequency drops, Xc 
increases. This makes Vout decrease. At very high frequencies, where Xc<<R, Vout is 
approximately equal to Vin. This can be seen graphically in Figure 10.6, where the 
frequency axis is normalized to fc. The break frequency (i.e., the frequency at which 
the signal has decreased by 3 dB) is found via the standard equation,

f c=
1

2π R C

The response below fc will be a straight line if a decibel gain axis and a logarithmic 
frequency axis are used. This makes for very quick and convenient sketching of 
circuit response. The slope of this line is 6 dB per octave (an octave is a doubling or 
halving of frequency, e.g., 800 Hz is 3 octaves above 100 Hz).20 This range covers a 
factor of two in frequency. This slope may also be expressed as 20 dB per decade, 
where a decade is a factor of 10 in frequency. With reasonable accuracy, this curve 
may be approximated as two line segments, called asymptotes, shown in Figure 10.6
(blue). The shape of this curve is the same for any lead network. Because of this, it is

20 The term octave is borrowed from the field of music. It gets its name from the fact that 
there are eight notes in the standard western scale: do-re-mi-fa-sol-la-ti-do.
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Figure 10.5
Lead network.

Figure 10.6
Lead network gain plot.
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very easy to find the approximate gain at any given frequency as long as fc is known.
It is not necessary to go through reactance and phasor calculations. To create a 
general response equation, start with the voltage divider rule to find the gain: 

V out

V i n

=
R

R− j X c

V out

V i n

=
R∠0

√R2
+X c

2∠−arctan
X c

R

The magnitude of this is, 

∣Av∣=
R

√R2+X c
2

∣Av∣=
1

√1+
X c

2

R2

(10.9)

Recalling that, 

f c=
1

2π R C
we may say, 

R=
1

2π f c C

For any frequency of interest, f, 

X c=
1

2 π f C

Equating the two preceding equations yields, 

f c

f
=

X c

R
(10.10)

Substituting equation 1.10 in equation 1.9 gives, 

Av=
1

√1+
f c

2

f 2

(10.11)
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To express Av in dB, substitute equation 10.11 into equation 10.5. 

A 'v=20 log10
1

√1+
f c

2

f 2

After simplification, the final result is: 

A 'v=−10 log10(1+
f c

2

f 2) (10.12)

Where 
fc  is the critical frequency, 
f  is the frequency of interest, 
A'v is the decibel gain at the frequency of interest. 

Example 10.13 

A circuit has a lower break frequency of 40 Hz. How much signal is lost at 
10 Hz? 

A 'v=−10 log10(1+
f c

2

f 2 )
A 'v=−10 log10(1+

402

10 2 )
A 'v=−12.3 dB

In other words, the signal level is 12.3 dB lower than it is in the midband. 
Note that 10 Hz is 2 octaves below the break frequency. Because the cutoff 
slope is 6 dB per octave, each octave loses 6 dB. Therefore, the approximate
result is −12 dB, which double-checks the exact result. Without the lead 
network, the gain would stay at 0 dB all the way down to DC (0 Hz.) 

Lead Network Phase Response Lead Network Phase Response 

At very low frequencies, the circuit of Figure 10.5 is largely capacitive. Because of 
this, the output voltage developed across R leads by 90 degrees. At very high 
frequencies the circuit will be largely resistive. At this point Vout will be in phase with
Vin. At the critical frequency, Vout will lead by 45 degrees. A general phase graph is 
shown in Figure 10.7. As with the gain plot, the phase plot shape is the same for any 
lead network. The general phase equation may be obtained from the voltage divider: 
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V out

V i n

=
R

R− j X c

V out

V i n

=
R∠0

√R2
+X c

2∠−arctan
X c

R

The phase portion of this is, 

θ=arctan
X c

R

By using equation 1.6, this simplifies to, 

θ=arctan
f c

f
(10.13)

Where 
fc is the critical frequency, 
f is the frequency of interest, 
θ is the phase angle at the frequency of interest. 

Often, an approximation, such as the blue line in Figure 10.7, is sufficient. By using 
Equation 10.13, you can show that this approximation is off by no more than 6 
degrees at the corners. 
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Figure 10.7
Lead network phase response.
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Example 10.14 

A telephone amplifier has a lower break frequency of 120 Hz. What is the 
phase response one decade below and one decade above? 

One decade below 120 Hz is 12 Hz, while one decade above is 1.2 kHz. 

θ=arctan
f c

f

θ=arctan
120 Hz
12Hz

θ=84.3degrees one decade below f c  (i.e, approaching 90 degrees)

θ=arctan 120 Hz
1.2kHz

θ=5.71degrees one decade above f c  (i.e., approaching 0 degrees)

Remember, if a circuit or amplifier is direct-coupled, and has no lead 
networks, the phase will remain at 0 degrees right back to 0 Hz (DC). 

Lag Network Response Lag Network Response 

Unlike its lead network counterpart, all systems will contain lag networks. In 
essence, it is little more than an inverted lead network. As you can see from Figure 
10.8, it simply transposes the R and C locations. Because of this, the response tends 
to be inverted as well. In terms of gain, Xc is very large at low frequencies, and thus 
Vout equals Vin. At high frequencies, Xc decreases, and Vout falls. The break point 
occurs when Xc equals R. The general gain plot is shown in Figure 10.9. Like the 
lead network response, the slope of this curve is −6 dB per octave (or −20 dB per 
decade.) Note that the slope is negative instead of positive. We can derive a general 
gain equation for this circuit in virtually the same manner as we did for the lead 
network. The derivation is left as an exercise. 

A 'v=−10 log10(1+
f 2

f c
2) (10.14)

Where 
fc is the critical frequency, 
f is the frequency of interest, 
A'v is the decibel gain at the frequency of interest. 
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Figure 10.8
Lag network.



Note that this equation is almost the same as Equation 10.12. The only difference is 
that f and fc have been transposed. 

In a similar vein, we may examine the phase response. At very low frequencies, the 
circuit is basically capacitive. Because the output is taken across C, Vout will be in 
phase with Vin. At very high frequencies, the circuit is essentially resistive. 
Consequently, the output voltage across C will lag by 90 degrees. At the break 
frequency the phase will be −45 degrees. A general phase plot is shown in Figure 
10.10. As with the lead network,we may derive a phase equation. Again, the exact 
steps are very similar, and left as an exercise. 

θ=−90+arctan
f c

f
(10.15)

Where 
fc is the critical frequency, 
f is the frequency of interest, 
θ is the phase angle at the frequency of interest. 
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Example 10.15 

A medical ultra sound transducer feeds a lag network with an upper break 
frequency of 150 kHz. What are the gain and phase values at 1.6 MHz? 

Because this represents a little more than a 1 decade increase, the 
approximate values are −20 dB and −90 degrees, from
Figures 10.7 and 10.8, respectively. The exact values are: 

A 'v=−10 log10(1+
f 2

f c
2 )

A 'v=−10 log10(1+
1.6 MHz2

150 kHz2 )
A 'v=−20.6dB

θ=−90+arctan
f c

f

θ=−90+arctan 150 kHz
1.6MHz

θ=−84.6degrees

The complete Bode plot for this network is shown in Figure
10.11. It is very useful to examine both plots simultaneously.
In this manner you can find the exact phase change for a
given gain quite easily. For example, if you look carefully at
the plots of Figure 10.11, you will note that at the critical
frequency of 150 kHz, the total phase change is −45 degrees.

390

Figure 10.11
Bode plot for 150 kHz lag.

f

A'v

150 kHz
0 dB

-6 dB/octave

Lag Network Phase Response

P
h
a
se

 (
d
e
g
re

e
s)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Normalized frequency
0.0 0.1 1.0 10.0 100.0

0.01 0.1 1 10 100

Exact
Approximate Figure 10.10

Lag network phase response.

f

θ

0°

-45°

-90°

150 kHz15 kHz 1.5 MHz



Because this circuit involved the use of a single lag network, this is exactly 
what you would expect. 

Rise Time versus Bandwidth Rise Time versus Bandwidth 

For pulse-type signals, the “speed” of a circuit is often expressed in terms of its rise 
time. If a square pulse such as Figure 10.12a is passed into a simple lag network, the 
capacitor charging effect will produce a rounded variation, as seen in Figure 10.12b. 
This effect places an upper limit on the duration of pulses that a given circuit can 
handle without producing excessive distortion. 

By definition, rise time is the amount of time it takes for the signal to traverse from 
10% to 90% of the peak value of the pulse. The shape of this pulse is defined by the 
standard capacitor charge equation examined in earlier course work, and is valid for 
any system with a single clearly dominant lag network. 

V out=V peak
(1−ϵ

−t
RC ) (10.16)

In order to find the time internal from the initial starting point to the 10% point, set 
Vout to 0.1Vpeak in Equation 10.16 and solve for t1. 
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Figure 10.12a
Pulse rise time effect:
Input to network.
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Figure 10.12b
Pulse rise time effect:
Output of network.



0.1V peak = V peak
(1−ϵ

−t1

RC )
0.1V peak = V peak−V peak ϵ

−t1

RC

0.9V peak = V peak ϵ
−t1

RC

0.9 = ϵ
−t1

RC

log 0.9 =
−t1

R C
   t1=0.105 RC (10.17)

To find the interval up to the 90% point, follow the same technique using 0.9Vpeak . 
Doing so yields:

t2=2.303 RC (10.18)

The rise time, Tr, is the difference between t1 and t2 

  T r=t 1−t 2

T r=2.303 R C−0.105 RC

T r ≈ 2.2 R C (10.19)

Equation 10.19 ties the rise time to the lag network’s R and C values. These same 
values also set the critical frequency f2. By combining equation 10.15 with the basic 
critical frequency relationship, we can derive an equation relating f2 to Tr. 

f 2=
1

2 π RC

Solving 10.19 in terms of RC, and substituting yields 

f 2=
2.2

2π T r

f 2=
0.35
T r

(10.20)

Where 
f2 is the upper critical frequency, 
Tr is the rise time of the output pulse. 
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Example 10.16 

Determine the rise time for a lag network critical at 100 kHz. 

f 2=
0.35
T r

T r=
0.35

f 2

T r=
0.35

100 kHz
T r=3.5μs

10.4 Combining the Elements - Multi-Stage Effects 10.4 Combining the Elements - Multi-Stage Effects 

A complete gain or phase plot combines three elements: (1) the midband response, 
(2) the lead response, and (3) the lag response. Normally, a particular design will 
contain multiple lead and lag networks. The complete response is the summation of 
the individual responses. For this reason, it is useful to find the dominant lead and 
lag networks. These are the networks that affect the midband response first. For lead 
networks, the dominant one will be the one with the highest fc . Conversely, the 
dominant lag network will be the one with the lowest fc . It is very common to 
approximate the complete system response by drawing straight-line segments such 
as those given in Figures 10.5 and 10.7. The process goes something like this: 

• Locate all fc s on the frequency axis. 
• Draw a straight line between the dominant lag and lead fc s at the midband 

gain. If the system does not contain any lead networks, continue the 
midband gain line down to DC. 

• Draw a 6 dB per octave slope between the dominant lead and the next lower 
lead network. 

• Because the effects of the networks are cumulative, draw a 12 dB per octave
slope between the second lead fc and the third fc. After the third fc, the slope 
should be 18 dB per octave, after the fourth, 24 dB per octave, and so on. 

• Draw a −6 dB per octave slope between the dominant lag fc and the next 
highest fc. Again, the effects are cumulative, so increase the slope by −6 dB 
at every new fc . 
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Example 10.17 

Draw the Bode gain plot for the following amplifier: A'v midband = 26 dB, 
one lead network critical at 200 Hz, one lag network critical at 10 kHz, and 
another lag network critical at 30 kHz.

The dominant lag network is 10 kHz. There is only one lead network, so it’s 
dominant by default. 

• Draw a straight line between 200 Hz and 10 kHz at an amplitude of 
26 dB. 

• Draw a 6 dB per octave slope below 200 Hz. To do this, drop down 
one octave (100 Hz) and subtract 6 dB from the present gain (26 dB 
− 6dB = 20 dB.) The line will start at the point 200 Hz/26 dB, and 
pass through the point 100 Hz/20 dB. Because there are no other 
lead networks, this line may be extended to the left edge of the 
graph. 

• Draw a −6 dB per octave slope between 10 kHz and 30 kHz. The 
construction point will be 20 kHz/20 dB. Continue this line to 
30 kHz. The gain at the 30 kHz intersection should be around 
16 dB. The slope above this second fc will be −12 dB per octave. 
Therefore, the second construction point should be at 60 kHz/4 dB 
(one octave above 30 kHz, and 12 dB down from the 30 kHz gain). 
Because this is the final lag network, this line may be extended to 
the right edge of the graph. 

A completed graph is shown in Figure 10.13. 
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Figure 10.13
Gain plot of complete amplifier.
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There is one item that should be noted before we leave this section, and that is the 
concept of narrowing. Narrowing occurs when two or more networks share similar 
critical frequencies, and one of them is a dominant network. The result is that the 
true −3 dB breakpoints may be altered. Here is an extreme example. Assume that a 
circuit has two lag networks, both critical at 1 MHz. A Bode plot would indicate that
the breakpoint is 1 MHz. This is not really true. Remember, the effects of lead and 
lag networks are cumulative. Because each network produces a 3 dB loss at 1 MHz, 
the net loss at this frequency is actually 6 dB. The true −3 dB point will have been 
shifted. The Bode plot only gives you the approximate shape of the response. 

10.6 Summary10.6 Summary

We have seen how to convert gains and signals into a decibel form for both powers 
and voltages. This is convenient because what would require multiplication and 
division under the ordinary scheme only requires simple addition and subtraction in 
the dB scheme. Along with this, dB measurement is used almost exclusively for 
Bode gain plots. A Bode plot details a system’s gain magnitude and phase response. 
For gain, the amplitude is measured in dB, while the frequency is normally 
presented in log form. For a phase plot, phase is measured in degrees, and again, the 
frequency axis is logarithmic. The changes in gain and phase at the frequency 
extremes are caused by lead and lag networks. Lead networks cause the low 
frequency gain to roll off. The roll off rate is 6 dB per octave per network. The phase
will change from +90 degrees to 0 degrees per network. Lag networks cause the high
frequency gain to roll off at a rate of −6 dB per octave per network. The phase 
change per lag network is from 0 degrees to −90 degrees. 

Review QuestionsReview Questions

1. What are the advantages of using decibels over the ordinary scheme? 
2. How do decibel power and voltage gain calculations differ? 
3. Define the differences between dB, dBW, dBm, dBV and dBu.
4. Describe a Bode plot.
5. What is a lead network? What general response does it yield? 
6. What is a lag network? What general response does it yield? 
7. What do the terms f1 and f2 indicate about a system’s response? 
8. What are the rolloff slopes for lead and lag networks? 
9. What are the phase changes produced by individual lead and lag networks? 
10. How is rise time related to upper break frequency? 
11. How do multiple lead or lag networks interact to form an overall system 

response? 
12. How does the decibel measurement scheme differ from the ordinary method 

of indicating gains and signal level?
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10.7 Exercises 10.7 Exercises 

AnalysisAnalysis

 dB emphasis

1. Convert the following power gains into dB form: a) 10  b) 80  c) 500  d) 1  
e) 0.2  f) 0.03. 

2. Convert the following dB power gains into ordinary form: a) 0 dB  b) 12 dB 
c) 33.1 dB  d) 0.2 dB  e) −5.4 dB  f) −20 dB. 

3. An amplifier has an input signal of 1 mW, and produces a 2 W output. What 
is the power gain in dB? 

4. A Hi-Fi power amplifier has a maximum output of 50 W and a power gain 
of 19 dB. What is the maximum input signal power? 

5. An amplifier with a power gain of 27 dB is driven by a 25 mW source. 
Assuming the amplifier doesn’t clip, what is the output signal in watts? 

6. Convert the following voltage gains into dB form: a) 10  b) 40  c) 250  d) 1 
e) 0.5  f) 0.004 

7. Convert the following dB voltage gains into ordinary form: a) 0.5 dB           
b) 0 dB c) 46 dB  d) 10.7 dB  e) −8 dB  f) −14.5 dB 

8. A guitar pre-amp has a gain of 44 dB. If the input signal is 12 mV, what is 
the output signal? 

9. A video amplifier has a 140 mV input and a 1.2 V output. What is the 
voltage gain in dB? 

10. The pre-amp in a particular tape deck can output a maximum signal of 4 V. 
If this amplifier has a gain of 18 dB, what is the maximum input signal? 

11. Convert the following powers into dBW: a) 1 W  b) 23 W  c) 6.5 W             
d) 0.2W e) 2.3 mW  f) 1.2 kW  g) 0.045 mW  h) 0.3 μW  i) 5.6E−18 W. 

12. Repeat Problem 11 for units of dBm. 

13. Repeat Problem 11 for units of dBf. 

14. Convert the following voltages into dBV: a) 12.4 V  b) 1 V  c) 0.25 V          
d) 1.414 V  e) 0.1 V  f) 10.6 kV  g) 13 mV  h) 2.78 μV. 

15. A two stage power amplifier has power gains of 12 dB and 16 dB. What is 
the total gain in dB and in ordinary form? 

16. If the amplifier of Problem 15 has an input of −18 dBW, what is the final 
output in dBW? in dBm? in watts? 

17. Referring to Figure 1.1, what are the various stages’ outputs if the input is 
changed to −4 dBm? to −34 dBW? 
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18. Which amplifier has the greatest power output? a) 50 watts  b) 18 dBW       
c) 50 dBm. 

19. Which amplifier has the greatest power output? a) 200 mW  b) −10 dBW    
c) 22 dBm. 

20. A three stage amplifier has voltage gains of 20 dB, 5 dB, and 12 dB 
respectively. What is the total voltage gain in dB and in ordinary form? 

21. If the circuit of Problem 20 has an input voltage of −16 dBV, what are the 
outputs of the various stages in dBV? In volts? 

22. Repeat Problem 21 for an input of 12 mV. 

23. Which amplifier produces the largest output voltage? a) 15 V  b) 16 dBV

Bode plot emphasis 

24. Given a lead network critical at 3 kHz, what are the gain and phase values at
100 Hz, 3 kHz, and 40 kHz? 

25. Given a lag network tuned to 700 kHz, what are the gain and phase values at
50 kHz, 700 kHz, and 10 MHz? What is the rise time? 

26. A noninverting amplifier has a midband voltage gain of 18 dB and a single 
lag network at 200 kHz. What are the gain and phase values at 30 kHz,    
200 kHz, and 1 MHz. What is the rise time? 

27. Repeat Problem 26 for an inverting (−180 degrees) amplifier. 

28. Draw the Bode plot for the circuit of Problem 26. 

29. Draw the Bode plot for the circuit of Problem 27. 

30. An inverting (−180 degrees) amplifier has a midband gain of 32 dB and a 
single lead network critical at 20 Hz (assume the lag network fc is high 
enough to ignore for low frequency calculations). What are the gain and 
phase values at 4 Hz, 20Hz, and 100 Hz? 

31. Repeat Problem 29 with a noninverting amplifier. 

32. Draw the Bode plot for the circuit of Problem 30. 

33. Draw the Bode plot for the circuit of Problem 31. 

34. A noninverting amplifier used for ultrasonic applications has a midband gain
of 41 dB, a lag network critical at 250 kHz, and a lead network critical at   
30 kHz. Draw its gain Bode plot. 

35. Find the gain and phase at 20 kHz, 100 kHz, and 800 kHz for the circuit of 
Problem 34. 

36. If the circuit of Problem 34 has a second lag network added at 300 kHz, 
What are the new gain and phase values at 20 kHz, 100 kHz, and 800 kHz? 

37. Draw the gain Bode plot for the circuit of Problem 36. 
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38. What are the maximum and minimum phase shifts across the entire 
frequency spectrum for the circuit of Problem 36? 

39. A noninverting DC amplifier has a midband gain of 36 dB, and lag networks
at 100 kHz, 750 kHz, and 1.2 MHz. Draw its gain Bode plot. 

40. What are the maximum and minimum phase shifts across the entire 
frequency spectrum for the circuit of Problem 39? 

41. What is the maximum rate of high frequency attenuation for the circuit of 
Problem 39 in dB/Decade? 

42. If an amplifier has two lead networks, what is the maximum rate of low 
frequency attenuation in dB/Octave? 

ChallengeChallenge

43. You would like to use a voltmeter to take dBm readings in a 600 Ω system. 
What voltage should produce 0 dBm?

44. Assuming that it takes about an 8 dB increase in sound pressure level in 
order to produce a sound that is subjectively “twice as loud” to the human 
ear, can a Hi-Fi using a 100 W amplifier sound twice as loud as one with a 
40 W amplifier (assuming the same loudspeakers)? 

45. Hi-Fi amplifiers are often rated with a “headroom factor” in dB. This 
indicates how much extra power the amplifier can produce for short periods 
of time, over and above its nominal rating. What is the maximum output 
power of a 250 W amplifier with 1.6 dB headroom? 

46. If the amplifier of Problem 34 picks up an extraneous signal that is a −10 
dBV sine wave at 15 kHz, what is the output? 

47. If the amplifier of Problem 39 picks up a high frequency interference signal 
at 30 MHz, how much is it attenuated over a normal signal? If this input 
signal is measured at 2 dBV, what should the output be? 

48. If an amplifier has two lag networks, and both are critical at 2 MHz, is the 
resulting f2 less than, equal to, or greater than 2 MHz? 

49. If an amplifier has two lead networks, and both are critical at 30 Hz, is the 
resulting f1 less than, equal to, or greater than 30 Hz? 

SimulationSimulation

50. Use a simulator to plot the Bode gain response of the circuit in Problem 39. 

51. Use a simulator to plot the Bode phase response of the circuit in Problem 34.

52. Use a simulation program to generate a Bode plot for a lead network 
comprised of a 1 kΩ resistor and a 100 nF capacitor.   
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Appendix AAppendix A

Standard Component SizesStandard Component Sizes

Passive components (resistors, capacitors and inductors) are available in standard sizes. The tables below are for
resistors. The same digits are used in subsequent decades up to at least 1 Meg ohm (higher decades are not 
shown). Capacitors and inductors are generally not available in as many standard values as are resistors. 
Capacitors below 10 nF (.01 μF) are usually available at the 5% standard digits while larger capacitances tend to
be available at the 20% standards.

5% and 10% standard values, EIA E24 and EIA E125% and 10% standard values, EIA E24 and EIA E12

10% values (EIA E12) are bold
20% values (seldom used) are every fourth value starting from 10 

(i.e., every other 10% value)

10 11 12 13 15 16 18 20 22 24 27 30
33 36 39 43 47 51 56 62 68 75 82 91

1% and 2% standard values, EIA E96 and EIA E481% and 2% standard values, EIA E96 and EIA E48

2% values (EIA E48) are bold

10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.0
13.3 13.7 14.0 14.3 14.7 15.0 15.4 15.8 16.2 16.5 16.9 17.4
17.8 18.2 18.7 19.1 19.6 20.0 20.5 21.0 21.5 22.1 22.6 23.2
23.7 24.3 24.9 25.5 26.1 26.7 27.4 28.0 28.7 29.4 30.1 30.9
31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2
42.2 43.2 44.2 45.3 46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9
56.2 57.6 59.0 60.4 61.9 63.4 64.9 66.5 68.1 69.8 71.5 73.2
75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9 93.1 95.3 97.6
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Appendix BAppendix B  

Methods of Solution of Linear Simultaneous EquationsMethods of Solution of Linear Simultaneous Equations

Some circuit analysis methods, such as nodal analysis and mesh analysis, yield a set of linear simultaneous 
equations. There will be as many equations as there are unknowns. For example, a particular circuit might yield 
three equations with three unknown currents (often referred to as a “3 by 3” for the matrix it creates). There are 
several techniques that may be used to solve this system of equations. The methods include graphical, 
substitution, Guass-Jordan elimination and determinants (determinants may be solved via Cramer's Rule/Sarrus’ 
Rule or via expansion by minors). 

GraphicalGraphical

Graphical solutions involve plotting the individual equations on graph paper. The location of where the lines 
cross is the solution to the system (i.e., values that satisfy all of the equations). This technique will not be 
discussed further because it is only practical for two unknowns. It would be very difficult to draw something 
like a four dimensional graph for four equations with four unknowns! 

SubstitutionSubstitution

The idea here is to write one of the equations in terms of one of the unknowns and then substitute this back into 
one of the other equations resulting in a simplified version. This process is iterated for as many unknowns as the
system includes. Take for example the following 2x2:

10 = 20I1 + 8I2

 2 =  8I1 + 4I2

Solve the second equation for I2.

 2 =  8I1 + 4I2

4I2 =   2 − 8I1

 I2 = 0.5 − 2I1

Substitute this back into the first equation and expand/simplify/solve.

10 = 20I1 + 8I2

10 = 20I1 + 8(.5 − 2I1)

10 = 20I1 + 4 − 16I1

10 =  4I1 + 4 
 I1 =  1.5

Finally, substitute this value back into one of the two original equations to determine I2. 
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  2 = 8I1 + 4I2

  2 = 8(1.5) + 4I2

  2 = 12 + 4I2

4I2 = −10 
 I2 = −2.5 

For a 3x3, this process is iterated as follows: Equation 2 would be solved for I3 and this would be substituted 
back into equation 1 yielding a new equation (let’s call it A) with only I1 and I2 terms. Similarly, Equation 3 
would be solved for I3 and this would be substituted back into equation 2 yielding a new equation (let’s call it B)
with only I1 and I2 terms. Equations A and B now make a 2x2 with I1 and I2 as the unknowns and can be solved 
as outlined above. This would yield values for I1 and I2 which could then be substituted into one of the three 
original equations to obtain I3. While the substitution method is perfectly valid for an arbitrarily sized system, it 
proves cumbersome as the system gets larger. 

Gauss-Jordan EliminationGauss-Jordan Elimination

In some respects, Gauss-Jordan is similar to substitution but it tends to involve less overhead for larger systems 
and thus is generally preferred. This method involves multiplying one equation by a constant such that when it is
subtracted from another equation, one of the unknown terms disappears. The process is then iterated for as many
unknowns exist in the system. Using the same example from before:

10 = 20I1 + 8I2

 2 =  8I1 + 4I2

Multiply the second equation by the ratio of the coefficients for I2 (8/4 = 2).

 2 =  8I1 + 4I2

 4 = 16I1 + 8I2

Subtract this new equation from the first equation. The I2 terms will cancel leaving just I1.

10 = 20I1 + 8I2

 4 = 16I1 + 8I2

 6 = 4I1

 I1 = 1.5 

Substitute this result back into one of the original equations to obtain I2. For a 3x3, iterate as follows: Using 
equations 1 and 2, multiply equation 2 by the ratio of the coefficients for I3. Subtract this equation from equation
1 to generate a new equation (let’s call it equation A) that only has I1 and I2 as unknowns. Using equations 2 and 
3, multiply equation 3 by the ratio of the coefficients for I3. Subtract this equation from equation 2 to generate a 
new equation (let’s call it equation B) that only has I1 and I2 as unknowns. Equations A and B now make a 2x2 
with I1 and I2 as the unknowns and can be solved as outlined previously. This would yield values for I1 and I2 
which could then be substituted into one of the three original equations to obtain I3. Like the substitution 
method, Gauss-Jordan grows rapidly as the system size increases. The process tends to be formulaic though, and
thus easier to handle.  
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DeterminantsDeterminants

Determinants revolve around the concept of a matrix which itself is little more than an ordered collection of 
coefficients and/or constants. It is imperative that the unknowns be in the same order in each equation (i.e., I1 
ascending to IX left to right) A simple coefficient matrix for the original 2x2 example is:

20  8
 8  4

The resultant value (properly referred to as the determinant) for a 2x2 matrix such as this may be solved using 
Sarrus’ Rule: Simply multiply the two values along the upper right-lower left diagonal and then subtract that 
product from the product of the two values found along on the upper left-lower right diagonal. In this example 
that’s: 

20*4 − 8*8 = 16

A solution involves dividing one determinant by another determinant (Cramer's Rule). That is, each matrix is 
solved for its resultant value and then these two values are divided to determine the final answer. One of these 
matrices will be the coefficient matrix just discussed. This will be placed in the denominator. The numerator 
matrix is a modified version of the basic coefficient matrix. It is created by replacing one column of coefficients 
with the constant values from the original system of equations. For example, the numerator matrix used to find 
I1 would replace the first column (the I1 coefficients 20 and 8) with the constants 10 and 2:

10  8
 2  4

The resultant value is 40 − 16 or 24.

Similarly, the numerator matrix for I2 would replace the I2 coefficients in the second column (8 and 4) with the 
constants 10 and 2:

20 10
 8  2

The resultant value is 40 − 80 or −40. To find any particular unknown, simply divide the modified matrix by the 
basic coefficient matrix.

      10  8
       2  4
I1 = --------
      20  8
       8  4

      24
I1 = -----
      16
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I1 =  1.5

In like fashion I2 is found:

      20 10
       8  2
I2 = --------
      20  8
       8  4

     −40
I2 = -----
      16

I2 = −2.5

Sarrus’ Rule may also be used with a 3x3 matrix. This is achieved by extending the matrix. Fourth and fifth 
columns are added to the right of the 3x3 matrix by simply making copies of the first two columns. This creates 
three right to left diagonals with three values each and three left to right diagonals with three values each. The 
three values along each diagonal are multiplied together. The three right to left products are then subtracted from
the sum of the three left to right products yielding a single resultant value (the determinant). To create the 
modified numerator matrix, replace the coefficient column of interest with the constant terms and then replicate 
columns one and two. For example, given these three equations:

10 = 20I1 + 8I2 + 3I3

 2 =  8I1 + 4I2 + 5I3

 7 =  3I1 + 5I2 + 6I3

The basic coefficient matrix (i.e., denominator) is:

20  8  3
 8  4  5
 3  5  6

The extended matrix is:
20  8  3  20  8
 8  4  5   8  4
 3  5  6   3  5

The result is: 

20*4*6 + 8*5*3 + 3*8*5 − 3*4*3 − 20*5*5 − 8*8*6

Sarrus’ Rule does not work beyond 3x3. 
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Expansion by Minors Expansion by Minors 

Expansion by Minors is another method that may be used to generate a determinant solution. This involves 
breaking the matrix into a series of smaller matrices (minors) that are combined using row-column coefficients. 
The position of these coefficients will also indicate whether the determinant of any particular sub-matrix is 
added or subtracted to the total. 

The first step is to establish a single row or column from which to derive the coefficients. This can be any 
horizontal row or vertical column (no diagonals). Each element of the chosen row or column determines the 
associated minor (essentially, that which is left over). Consider the 3x3 used previously:

20  8  3
 8  4  5
 3  5  6

Choosing the top row yields coefficients of 20, 8 and 3. For each of these, blot out its row and column and see 
what is left. This leaves three 2x2 matrices, one for each coefficient. Multiply each coefficient by the 
determinant of its 2x2 matrix. To determine whether this result is added or subtracted to the others, the sign may 
be found using the following map for the coefficients:

+  −  +  − etc.
−  +  −  + etc.
+  −  +  − etc.

The origin in the upper left is positive and the signs continually alternate across from it and down from it. The 
result using the top row for the coefficients is found thus (the 2x2 matrices are bold red for clarity):

     4 5       8 5       8 4
20 * 5 6 − 8 * 3 6 + 3 * 3 5

If the second column was used instead (8, 4, 5), the result is found like so:

     8 5      20 3      20 3

−8 * 3 6 + 4 * 3 6 − 5 * 8 5

In closing, whichever method is used, always look for null coefficient terms (that is, places in the equations and 
matrices where the coefficients are zero). Smart use of these can considerably simplify the computations as there
are few mathematical operations easier than multiplying by zero. For example, if a particular row of a matrix 
contains a few zeros, that would be a good candidate for the coefficient row when using expansion by minors 
because some 2x2 minors need not be computed (they will just be multiplied by the zero coefficient).
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Appendix CAppendix C

Equation ProofsEquation Proofs

RMS Equivalents for Non-Sines

For any waveform, the root-mean-square equivalence factor is computed by normalizing the peak value to unity,
squaring the waveform, finding the mean value of that intermediate result, and then taking the square root of the 
mean. This value can never be more than unity. 
  
The RMS value of a square wave is equal to its peak value. This can be proven by observation. Normalize the 
square wave's peak value to unity. Its negative peak will be −1. Squaring these values results in the constant 
value 1 at any time (assuming the rise and fall times are negligible). Obviously, the mean of this is 1 as is its 
square root. Thus the RMS equivalence factor is unity.

For a rectangular pulse that is always positive (i.e., traversing from zero volts to some positive peak and back to 
zero), the RMS value is equal to its peak value times the square root of its duty cycle. As there is no negative 
portion to this waveform, we need only examine the positive portion. First, its normalized amplitude is always 
unity, as is its squared value. The mean is simply the time for this positive pulse divided by the period of the 
wave. By definition, that's equivalent to the duty cycle (i.e., the percentage of time the pulse is positive out of a 
full cycle). Thus, the RMS equivalence factor is the square root of the duty cycle.

For a triangle wave, the RMS value is equal to its peak value times one over the square root of three. This can be
proven by first noting that a triangle wave has quarter wave symmetry. Consequently, we need examine only the 
first quarter of a cycle because the other three will produce identical numerical results.

To ease computation, normalize the amplitude and the time for the first quarter cycle to unity. The result is a 
straight line that starts at the origin and reaches an amplitude of 1 when time also reaches 1. Written as a 
function of time, the expression for such a voltage is:

v (t )= t

Squaring this gives us t2. To find the mean, we integrate this function:

mean =∫
0

t

t2 dt

mean =
1
3

t3 |t=0

t=1

mean =
1
3

Finally, taking the square root results in a factor of one over the square root of three. QED. 
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Maximum Power Transfer: Finding the Maximizing Value of P = R/(R2+2R+1)

While the algebraic and graphing technique explored in Chapter 5 leads to a proper answer, it is incomplete. A 
more rigorous treatment using differential calculus follows. We have already determined that the reactive 
portion of the load must have the same magnitude but opposite sign of the internal reactance in order to 
maximize load current, and therefore maximize load power. Thus, we need only examine the resistive portion 
which is described by the equation P = R/(R2+2R+1). This function exhibits a single peak and thus we may find 
the corresponding value by taking the first derivative of the function, setting it to zero (i.e., find the point where 
the slope goes to zero), and solving for R. Chain rule can be used to solve this. Chain rule states: 

dy

du

du

dx

dy

dx


One way to apply the chain rule is first to rewrite the main equation to remove the numerator R. This effectively 
removes the issues of having a quotient or product. We divide through by R and arrive at:

R
R

P
1

2

1




or in a somewhat more convenient form:

11)2(  RRP

Using the chain rule the derivative of this is:

)1()2( 221   RRR
dR

dP
 

or in “prettier” form:

  21

2

)2(

1








RR

R

dR

dP

Multiply through by R2

22

2

)12(

1





RR

R

dR

dP

Which, for a really anal retentive sort of completeness, can be rewritten as:

4

2

)1(

1





R

R

dR

dP

For dP/dR to be zero, R must equal 1. In other words, it must match the internal resistance. QED.
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Finding k0 : Determining f1 and f2 in Resonant Circuits

The coefficient k0 was defined such that: f 1 =
f 0

k 0

 and f 2 = f 0×k 0

We start with the definition of circuit Q based on bandwidth and resonant frequency, and expand, solving in 
terms of f2.

Qcircuit =
f 0

BW
=

f 0

f 2 − f 1

f 2 =
f 0

Qcircuit

+f 1 (EQ 1)

The resonant frequency is equal to the geometric mean of f1 and f2.

f 0 = √ f 1 f 2

f 1 =
f 0

2

f 2

(EQ 2)

Substituting EQ 2 into EQ 1 yields:

f 2 =
f 0

Qcircuit

+
f 0

2

f 2

(EQ 3)

We normalize f0, taking it as unity. This means that f2 is now equivalent to k0. Rewriting EQ 3 yields:

k 0 =
1

Q circuit

+
1
k 0

0 = k 0
2 −

1
Q circuit

k0 −1

We can solve this using the quadratic formula where a = 1, b = 1/Qcircuit and c = −1.

−b±√b2
−4ac

2a

Substituting and simplifying results in the equation for k0 :

k 0 =
1

2Q circuit

+√ 1

4Qcircuit
2
+1
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Appendix DAppendix D  

Answers to Selected Odd-Numbered ProblemsAnswers to Selected Odd-Numbered Problems

1 Fundamentals1 Fundamentals

  1. 10, 7.07, 0, 1 kHz, 1 ms, 0°  3. 20, −3, 50 Hz, 20 ms, 0°

  5. 10, 7.07, 0, 100 Hz, 10 ms, 45°  7. 1, 10, 400 Hz, 2.5 ms, −45°

  9. 200 μs, 10 μs 11. 36°

13. 14.1445°, 11.2−63.4°, 102169°, 5k53.1° 15. 7.07 + j7.07, j0.4, −4.5 + j7.79, 70.7 − j70.7

17. 15 + j30, j4, −20−j4, −70 + j250 19. −34.5k + j36k, −725 + j95, 2.39 −j0.709,       
−2.71 −j0.457

21. 1000°, 10−115°, 0.5145°, 0.25−45° 23. 2.7180°, 4.91−92.7°, 0.076123°, 5444.5°

25. −j15.9 k, −j318, −j15.9, −j0.398, −j15.9E−3 Ω 27. −j318 M, −j6.77 M, −j144.7 k, −j96.5 Ω

29. j6.28, j314, j6.28 k, j251 k, j6.28 M Ω 31. j62.8, j3.14 k, j62.8E−3, j2.51 Ω

33. 35. 1.67 @ 3 kHz, 1 @ 5 kHz, 0.714 @ 7 kHz,      
0.555 @ 9 kHz, 0.455 @ 11 kHz
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37. 284 nF, 482 pF, 339 pF, 132.6 nF, 212 nF 39. 892 nH, 525 μH, 748 μH, 1.91 μH, 1.19 μH

41. a 43. b
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2 Series RLC Circuits2 Series RLC Circuits

  1. 2k − j1.94 k Ω  3. 270 + j125.7 Ω

  5. 1 k − j1.278 k Ω  7. 300 − j400

  9. 1.447 μF 11. v(t)=0.1sin2π1000t (i and v are in phase)

13. i is 241 mA p-p and lags by 90° 15. v is 16.6 V p-p and leads by 90°

17. 1 k − j318 Ω  19. i = 953E−617.6° amps, vR = 953E−317.6° 
volts, vC = 303E−3−72.4° volts, delay = 25 μs

21. 1 k + j3.14 kΩ 23. 1 k + j942 Ω

25. 2 k − j33.4 Ω 27. i = 0.4999E−3.957° amps, vR = 0.998.957° 
volts, vC = 16.7E−3−89° volts, delay = 167 μs

29. i = 21.2E−345° amps, vR = 4.2445° volts,       
vC = 4.24−45° volts

31. vS = 60.9−23.2° volts, vR = 560° volts,            
vC = 24−90° volts

33. i = 329E−670.8° amps, vR = 329E−370.8° 
volts, vC = 1.05−19.2° volts, vL = 103E−3160.8° 
volts

35. i = 48.7E−3−13° amps, vR = 9.745−13° volts,  
vC = 3.88−103° volts, vL = 6.12577° volts

37. i = 493E−39.52° amps, vB = 58.241.6° volts, 
vAC = 63−29° volts

39. i = 1E−30° amps, vR = 10° volts,                     
vC = 200E−3−90° volts, vL = 200E−390° volts
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41. i = 2.24E−363.4° amps, vB = 8.94−26.6° volts, 
vC = 2.24153.4° volts, vAC = 12−4.8° volts

43. i = 35.36E−3−45° amps, vC = 2.12−135° volts,
vR = 1.414−45° volts, vL = 3.5445° volts

45. vR = 100° volts, vC = 5.3−90° volts,                 
vL = 7.0790° volts

47. vR = 2.40° volts, vL = 85.4E−390° volts,          
vC = 424E−390° volts

49. vR = 1100° volts, vC = 88−90° volts,                
vL = 22090° volts

51. vAC = 6087.8° volts, vB = 20.1−83.3° volts,      
vC = 20−90° volts

53. vR = 0.32970.8° volts, vL = 0.1034160.8° volts, 
vC = 1.048−19.2° volts

55. L = 79.6 μH, C = 7.24 nF

57. vR = 7.23−130° volts, vL = 3.62−40.1° volts,    
vC = 1.45139.9° volts

59. f = 15.594 kHz

61. f = 3.185 kHz
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3 Parallel RLC Circuits3 Parallel RLC Circuits

  1. 73.2−12.5° (71.4 −j15.8)  3. 99−8.04° (98 −j13.8)

  5. 182.952.4° (111.5  + j145)  7. f = 45.2 MHz

  9. 11. is = 0.1200010.18°, iR = 0.120°,                        
iC = 377E−690°

13. is = 9.43E−3−58°, iR = 5E−30°,                      iC 
= 2E−390°, iL = 10E−3−90°

15. is = 47.4E−316.3°, iR = 45.5E−30°,                   
iC = 20E−390°, iL = 6.667E−3−90° (all peak)

17. iR = 19.99E−3−1.73°, iC = 603E−688.27° 19. vR = vL = 627E−387° volts

21. vs = 2.82−28.1° volts 23. i2.2k = 5.06E−3−68.2°, i4.7k = 2.37E−3−68.2°,     
iC = 55.7E−321.8°, iL = 37.1E−3−158.2°

25. iC = 670E−6150°, iL = 536E−6−30°,                  27. iR = 1.67E−3−5°, iC = 835E−685°,                    
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iR = 2.23E−360° iL = 1.044E−3−95°

29. 2.84 μF 31. 7.7 nF

33. 34.5 nF 35. 65.7 nF

37. 390 nF 39. 507 nF

41. 128 mH

4 Series-Parallel RLC Circuits4 Series-Parallel RLC Circuits

  1. Z10k ≈ 1250°,  Z1M ≈ 125−0.8°,                     
Z100M ≈  68.8−24.2° Ω

 3. Z300 ≈ 0.7590°,  Z30k ≈ 77.589.4°,                     
Z3M ≈  9075.4° Ω

  5. Z = 18051.6° Ω  7. is = 9.64E−3−85.6°, iR = 740.7E−60°,                
iC = iL = 9.62E−3−90°,

  9. vR = vC = 3.45−80.5°, vL = 7.2827.9° 11. i50 = 31.4E−690°, i91 = i20 = 12.6E−689.9°,       
is ≈ 44E−690°

13. vb = 9.19−50°, vab = 15.826.5° 15. ij4k = 5E−3−90°, i2.7k = 7.41E−30°,                    
i3.9k = i−j1k = 4.97E−314.4°, is = 12.8E−3−17.1°

17. vb = 1200.7°, vab = 20−175.6° 19. i15k = iL = 887E−6−4°, i12k = 1.12E−33.17°

21. va = 4.814.1°, vb = 6.6214.1° 23. va = 571E−3−26.5°, vb = 537E−3−6.68°

25. va = 19.85127.2°, vb = 23.8127.9° 27. ic = 12.83E−3136.9°

29. va = 7.3261.5°, vb = 7.175.6° 31. vab = −133.30°

33. 217 nF 35. 3.24 μF

37. 5.9 μF 39. 19.1 mH
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5 Analysis Theorems and Techniques5 Analysis Theorems and Techniques

 1.  vb = 2.993.5°  3. i82 = 13.3E−359.8° 

 5. vb = 1.08165°  7. i2.2k = 1.3E−349.2° 

 9. vb = 7.8498.9°, vcd = 10.2−44.2° 11. iS1 = 337E−6−73.6°, iS2 = 401E−6152°

13. vab = 14.3−25.4° 15. vab = 972E−3−166°

17. va = 1.31−174°, vb = 2.58−154° 19. iC = 103E−3101°, iL = 369E−3171°

21. vbc = 19.65−102.5° 23. iE = 14.8E−3177°

25. vb = 10.748.4° 27. iL = 286.7E−340.6°

29. vab = 7.18−115° 31. ZTH = 910°, ETH = 10°

33. ZTH = ZN = j714.3, ETH = 8.5710°,                        
IN = 12E−3−90°

35. ZN = 514.531°, IN = 24E−3−45°

37. vb = 5.69−71.5° 39. ZN = 156417.1°, IN = 19.2E−3−17.1°,               
ZL = 1495 − j461

41. ZTH = ZN = 64.418.8°, ETH = 113.618.8°,           
IN = 1.7650°, Combo needed = 61 − j20.7,                 
P = 52.9 W

43. All three pair = 3.33 k + j3.33 k

45. All three pair = 1.33 k − j1 k 47. Za = Zxy = 3.667 k + j3.667 k,                                  
Zb = Zxz = 5.5 k + j5.5 k, Zc = Zyz = 11 k + j11 k

49. Za = Zxy = 1.83 k − j1.83 k,                                      
Zb = Zxz = 2.75 k − j2.75 k, Zc = Zyz = 5.5 k − j5.5 k

51. vbc = 4.554565.4°

53. iS = 11.5E−311.3°, in series with 4.3 kΩ and a 
capacitive reactance of −j5 k

55. iS = 1.54E−3−22.7°, in parallel with a series 
combination of 600 Ω and 2 mH

57. eS = 1.98−49.3°, in parallel with a series 
combination of 1 kΩ and 79.6 nF

59. eS = 96.319°, in parallel with a series 
combination of 9.1 kΩ and 5 mH
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61. 63. 

65. −j43.8 Ω
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6 Nodal and Mesh Analysis6 Nodal and Mesh Analysis

 1. vc = 34.437.7°  3. i43 = 33.2E−344.4°

 5. vc = 180−106°  7. i4Ω = 772E−347.1°

 9. vac = 18.35−80.8° 11. i22 = 3.07−153°

13. vc = 6.09−3.68° 15. i3.3k = 9.86E−318.8°

17. vc = 1838.9° 19. vbc = 1.0959.8°

21. vba = 964E−3127.3° 23. vcb = 15.2149°

25. Loop ordering is left to right

      20° = (4.9 k)i1 − (2.2 k)i2

     −30° = − (2.2 k)i1 + (2.2 k − j106)i2

27. i75 = 8.22E−3−138.5°

29. Loop ordering is left to right

      200° = (6.6 k + j4 k)i1 − (2.7 k + j4 k)i2

     −50° = − (2.7 k + j4 k)i1 + (4.5 k + j3 k)i2

vb = 7.8498.9°

31. ij200 = 4.36E−3−28.5°

33. vcd = 218E−3−153° 35. i−j200 = 49.5E−3−44.8° (up)

37. vc = 14.4133.3° 39. ij300 = 11.7E−3138° (up)

41. vbc = 4.54565.4° 43. iR3 = 9.81E−3175°

45. vb = 9.24−8.7° 47. i2.2k = 1.51E−3−2.04°

49. vab = 14.3−25.4° 51. i330 = 7.76E−314.1°

53. vbc = 58.9175° 55. vb = 2.6842.3°

57. i5k = 49.9E−6−29.9° 59. vc = 106.790.6°

61. i1k = 17.8E−321.8° 63. va = 9.776°, vb = 0.273−12.3°

65. i1k = 5.24E−332.9° 67. vab = 90.6−112°

69. i1k = 99.95E−60° 71. vd = 16.670.191°
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7 AC Power7 AC Power

1. S = 6.25 mVA, P = 4.88 mW, Q = 3.9 mVAR (ind), 
PF = 0.781

3. S = 64.4 VA, P = 57.7 W, Q = 28.8 VAR (ind), PF = 
0.894

 5. S = 315 VA, P = 162 W, Q = 270 VAR (ind),         
PF = 0.515

7. S = 751 VA, P = 720 W, Q = 216 VAR (cap),         
PF = 0.958

 9. i = 4.286 A, P = 90.9 W 11. P = 6.4 kW, Q = 4.8 kVAR, L = 2.86 mH

13. S = P = 180 W, Q = 0 VAR, i = 1.5 A 15. S = P = 1600 W, Q = 0 VAR

17. S =  1523 VA, P = 1400 W, Q = 600 VAR,           
PF = 0.919, i = 12.7 A

19. S = 1811 VA, P = 1800 W, Q = 200 VAR,             
PF = 0.994, i = 15.09 A

21. 89.5% 23. 0.829

25. S = 683 VA, P = 478 W, Q = 488 VAR,                   
i = 5.69 A

27. S = 2403 VA, P = 2332 W, PF = 0.971, i = 20 A

29. S = 3154 VA, P = 2943 W, Q = 1135 VAR,           
PF = 0.933

31. 141 μF

33. 102 mH 35. 17.6 mH

37. 260 μF
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8 Resonance8 Resonance

 1. BW = 14.67 kHz, f1 = 432.7 kHz, f2 = 447.3 kHz  3. Qcoil = 50, Rcoil = 1.88 Ω

 5. 15 kΩ || j600 Ω  7. Rp = 20.36 kΩ, Lp = 75 μH

 9. f0 = 247 kHz, Q = 10.2 11. f0 =  5.03 kHz, Qsys = 8.35, BW = 602 Hz

13. f0 = 10.07 kHz, Qsys = 4.22, BW = 2.39 kHz,          
vC = 4.22

15. f0 = 10.07 kHz, Qsys = 3.51, BW = 2.87 kHz,          
vC = 3.51

17. f0 = 10.07 kHz, Qsys = 4.22, BW = 2.39 Hz,          
vR= 1.5, vC = 6.32

19. f0 = 136.8 kHz, Qsys = 11, BW = 12.4 kHz,              
iL = 424E−3−84.8°, iC = 425.5E−390°

21. f0 = 360.4 kHz, Qsys = 24.1, BW = 14.9 kHz,           
iR = 3.19E−30°, iC = 169.8E−390°,                         
iL = 169.8E−3−88.7° 

23. f0 = 142.4 kHz, Qsys = 14.35, BW = 9.92 kHz,         
iR = 5E−30°, iC = 111.9E−390°,                               
iL = 111.8E−3−88.6°

25. f0 = 225 kHz, Qsys = 25.3, BW = 8.9 kHz,                
iR = 149E−60°, iC = 12.6E−390°,                            
iL = 12.6E−3−88.4°, vR = 1.787

27. 135 μH

29. 6.94 kΩ 31. Qsys = 50, however, none of the inductors exhibit 
Qcoil ≥ 50 at 1 MHz. Therefore there are no viable 
candidates because Qsys can be no larger than Qcoil.

9 Polyphase Power9 Polyphase Power

 1. vLINE = 1200° V (with 120° and 240°, other 
phases not shown from here on), iLINE = 20.8 A,      
iLOAD = 12 A, PLOAD = 4320 W

3. vLINE = 208 V, iLINE = iLOAD = 10.4 A,  PLOAD = 6490 W

 5. vLINE = 120 V, vLOAD = 69.3 V, iLINE = 13.86 A,       
iGEN-PHASE = 8 A, PTOTAL = 2880 W

7. vLINE = vLOAD = 208 V, iLINE = 6 A, PLOAD = 2160 W

 9. vLINE = 208 V, iLINE = 33.4 A, SLOAD = 12 kVA,      
PLOAD = 11.1 kW

11. vLINE = 120 V, iLINE = iLOAD = 11.14 A, SLOAD = 4 kVA,
PLOAD = 3.72 kW

13. vLINE = vLOAD = 398 V, iLINE = 13.8 A,  iLOAD = 7.97 A,
SLOAD = 9.52 kVA, PLOAD = 7.61 kW

15. vLINE = 120 V, iLINE = iLOAD =  11. A, SLOAD = 4 kVA, 
PLOAD = 3.72 kW

17. vLINE = 120 V, iLINE =  2.747 A, SLOAD = 571 VA, 
PLOAD = 566 W

19. 91.5 μF
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10 Decibels and Bode Plots10 Decibels and Bode Plots

1) A) 10 dB  B) 19 dB  C) 26.99 dB  D) 0 dB  E) −6.99 dB  F) −15.23 dB

3) 33 dB 

5) G = 501,   Pout = 12.53 W

7) A) 1.06  B) 1  C) 199.5  D) 3.43 E) 0.398  F) 0.188

9) A = 8.57  A' = 18.66 dB

11) A) 0 dBW B) 13.6 dBW  C) 8.13 dBW  D) −7 dBW  E)  −26.4 dBW  F)30.8 dBW
G) −43.5 dBW  H) −65.2 dBW  I) −172.5 dBW

13) A) 150 dBf B) 163.6 dBf  C) 158.1 dBf  D) 143 dBf  E) 123.6 dBf  F) 180.8 dBf
G) 106.5 dBf  H) 84.8 dBf  I) −22.5 dBf

15) G'total = 28 dB,  G = 631

17) For P'in = 4 dBm: output stage 1 = 6 dBm, stage 2 = 0 dBm, stage 3 = 15 dBm. 

For P'in = −34 dBm: output stage 1 = − 24 dBW, stage 2 = −30 dBW, stage 3 = −15 dBW.

19) a. 200 mW

21) V'out = 21 dBV, 21 dBV = 11.2 V (final output)

For stage 1: 4 dBV = 1.58 V
For stage 2: 9 dBV = 2.82 V

23) a. 15 V

25) At 50 kHz: −0.022 dB, −4.09 degrees
At 700 kHz: −3 dB, −45 degrees
At 10 MHz: −23.1 dB, −86 degrees
Tr = 500 μsec

27) The amplitude portion does not change. Phases are: At 30 kHz −188.5 degrees, at 200 kHz −225 degrees,      
at 1 MHz −258.7 degrees
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29)

31) At 4 kHz: 78.7 degrees, at 20 Hz: 45 degrees, at 100 Hz: 11.3 degrees

33)

35) Net gain at 20 kHz = 35.87 dB
Net phase at 20 kHz = 51.7 degrees
At 100 kHz: phase = −5.1 degrees, A'v = 40 dB

At 800 kHz: phase = −70.5 degrees, A'v = 30.5 dB

37)

420

f

A'v

200 kHz

18 dB f

θ

0°

-180°

-270°

2 MHz20 kHz

f

A'v

20 Hz

32 dB

f

θ

0°

90°

200 Hz2 Hz

45°

20 Hz

f

A'v

250 kHz 300 kHz30 kHz



 
39)

 

41) Each lag network rolls off at 20 dB/decade for a 60 dB/decade total (i.e., above 1.2 MHz).

43) 0.775 V

45) 360 W

47) 71.5 dBV

49) Greater than 30 Hz. 
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Appendix EAppendix E

A Closing ObservationA Closing Observation

This title is the twelfth in a series of free open educational resources, now at five texts and seven laboratory 
manuals. People occasionally ask why these titles have not gone through the typical route of using a traditional 
publisher (indeed, the Operational Amplifiers & Linear Integrated Circuits text went that route originally and 
then reverted to OER for its third edition). Surely, money is to be made, and after all, this is the culture that 
invented the modern use of the word “monetize”. In a culture that seeks to monetize everything, creating 
something of value and then giving it away is a subversive act. Some people do not see the incessant search for 
profit as necessarily a societal good. 
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