Series and Parallel Coil Transforms

Professor Fiore, jfiore@mvcc.edu

Practical Series Coil to Parallel Equivalent

Assume that a practical series coil exists with the components R and jX. What are the values of the equivalent parallel circuit? We shall use A and jB to represent the parallel version and reduce confusion. First, start with the standard parallel formula, and then proceed.

\[
R + jX = \frac{1}{\frac{1}{A} + \frac{1}{jB}}
\]

\[
\frac{1}{R + jX} = \frac{1}{\frac{1}{A} + \frac{1}{jB}}
\]

\[
\frac{1}{R + jX} \cdot \frac{R - jX}{R - jX} = \frac{R}{R^2 + X^2} + \frac{-jX}{R^2 + X^2}
\]

Therefore,

\[
\frac{1}{A} = \frac{R}{R^2 + X^2}
\]

\[
\frac{1}{jB} = \frac{-jX}{R^2 + X^2}
\]

and thus

\[
A = \frac{R^2 + X^2}{R}
\]

\[
jB = j\frac{R^2 + X^2}{X}
\]

If X >> R, then

\[
A \approx \frac{X^2}{R} = Q_{coil}X
\]

\[
jB \approx j\frac{X^2}{X} = jX
\]
Parallel to Series Coil Equivalent

Assume that a parallel inductor network consisting of \(R \) and \(jX \) exists. What is the equivalent series network? Again, we shall name the series components \(A \) and \(jB \) to avoid confusion. First, start with the product-sum rule, and then expand.

\[
A + jB = \frac{RjX}{R + jX}
\]

\[
= \frac{RjX}{R + jX} \cdot \frac{R - jX}{R - jX} = \frac{X^2R}{R^2 + X^2} + \frac{jXR^2}{R^2 + X^2}
\]

Thus,

\[
A = \frac{X^2R}{R^2 + X^2}
\]

\[
jB = j \frac{XR^2}{R^2 + X^2}
\]

If \(R \gg X \), then

\[
A \approx \frac{X^2R}{R^2} = \frac{X^2}{R} = \frac{X}{Q_{\text{parallel}}}
\]

\[
jB \approx j \frac{XR^2}{R^2} = jX
\]