1. Write the code to perform the following (a few lines at most): - Print Performing Mind Meld to the screen 10 times.

- Create a tuple called unlikely_pets, initializing it with the strings: "slug", "smilodon", "honey badger" and "tape worm".
- Generate a random integer from 0 through 20.
- Initiate a loop that will cycle through the values 1200, 2400, 3300, 4700 .
- Given a list called power that is filled with floating point values, determine the average of the largest value and the smallest value.
- Given the list above, print out the second, third and fourth values.

2. Write the output of the do nothing useful program, below.
```
# Skeezix Sneezes!
x = 3
y = 1
print("\n\tReady!\n")
for c in range(3):
        z = x
        while z < 5:
            z = z + y
            print(c, z, y)
        print("Set!")
print("Go!")
```

Answers follow.

```
- Print Performing Mind Meld to the screen 10 times.
# Assuming we want each on their own line, this is quick
print("Performing Mind Meld\n"*10)
# This will also work
for i in range(10):
    print("Performing Mind Meld")
# as will this (least desirable)
i=0
while i < 10:
    print("Performing Mind Meld")
    i+=1
- Create a tuple called unlikely_pets, initializing it with the
strings: "slug", "smilodon", "honey badger" and "tape worm".
# () yields a tuple, [] yields a list
unlikely_pets=("slug","smilodon","honey badger","tape worm")
- Generate a random integer from 0 through 20.
# Make sure you import random first
r = random.randrange(20)
# This works but its the long way home:
r = int(20*random.random())
- Initiate a loop that will cycle through the values 1200, 2400,
3300, 4700.
for x in 1200,2400,3300,4700:
    # looped code goes here
# If you need to use these values in another context you could
# put them in a list and then access the list:
y=[1200,2400,3300,4700]
for x in y:
    # looped code goes here
```

- Given a list called power that is filled with floating point values, determine the average of the largest value and the smallest value.
\# There are a few ways to determine the max and min. The most \# straightforward is to sort it. The min will be at the front \# and the max will be at the back end.
power.sort()
pmin=power [0]
pmax=power[len(power)-1] \# a shortcut is pmax=power[-1]
pavg=(pmin+pmax) $/ 2$
\# or you could put it altogether like so
power.sort()
pavg=(power[0]+power[-1])/2

```
# If we had a tuple, we couldn't use the member function
#.sort(). Instead, we'd make a sorted copy using the sorted()
# function as in powercopy=sorted(power) and use the copy.
# Sorting large sequences can be time consuming so an alternate
# method is to search the list for min and max values, like we
# did in the maximum power theorem lab exercise.
pmin=pmax=power[0] #initialize to first value in list
for p in power:
        if p < pmin:
            pmin=p
        elif p > pmax:
        pmax=p
pavg=(pmin+pmax)/2
```

- Given the list above, print out the second, third and fourth
values.
\# Remember, Python starts counting at 0 not 1
print (power[1:4])
\# If you don't want to print them out as a sub-list but prefer to
\# see them individually, loop through them
for i in range $(1,4)$:
print(power[i])

2. Write the output of the do nothing useful program, below.
```
# Skeezix Sneezes!
x = 3
y = 1
print("\n\tReady!\n")
for c in range(3):
        z = x
        while z < 5:
        z = z + y
        print(c, z, y)
        print("Set!")
print("Go!")
```


