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Given a simple voltage source with internal resistance, a useful question to ask is “What value of
load resistance will yield the maximum amount of power in the load?” While it is not true that 
maximizing load power is a goal of all circuit designs, it is a goal of a portion of them and thus 
worth a closer look. Consider the basic circuit below with load resistance R:

We would like to describe the load power in terms of the load resistance. To make the job easier,
we may normalize the voltage source E to 1 volt and the source resistance Re to 1 Ohm. By doing
this, R also becomes a normalized value, that is, it no longer represents a simple resistance value 
but rather represents a ratio in comparison to Re. In this way the analysis will work for any set of 
source values. Note that the value of E will equally scale the power in both Re and R, so a precise
value is not needed, and thus, we may as well chose 1 volt for convenience. 

The power in the load can be determined by using I2R where I=E/(Re+R). Using our normalized 
values I=1/(1+R) and thus the load power is:
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    or after expanding,  P = R/(R2+2R+1)

We now have an equation that describes the load power in terms of the load resistance. Before 
we go any further, take a look at what this equation tells you, in general. It is obvious that 
maximum power will not occur at the extremes. If R=0 or R=∞ (i.e., shorted or opened load) the 
load power is zero. While shorting the load will yield the maximum load current, it will also 
yield zero load voltage and thus no power. Similarly, opening the load will yield maximum load 
voltage but it will also yield zero load current, and again, no load power. To find the precise 
value that produces the maximum load power, the proof can be divided into two major portions. 
The first involves graphing the function and the second requires differential calculus to solve for 
a precise value. 



Graphing the Power Function P = R/(R2+2R+1)

 This may be done in parts, looking at the contribution of each term, and then combining to form 
the final result. First, consider the denominator R2+2R+1. It consists of three segments. The most
simple is the horizontal line at +1. The 2R term creates a straight line with slope 2 starting at the 
origin. The R2 term creates a simple curve with increasing slope that starts at the origin, crosses 
the horizontal +1 line at R=1 and also crosses the 2R line at R=2. These items are drawn 
individually and then added together, below:

Of course, we must remember that we really want 1/( R2+2R+1) and so we plot the reciprocal of 
the combo:

Finally, consider that the numerator consists of the single term R, and thus is plotted as a straight 
line with slope 1 starting at the origin (similar to the 2R line above). Combining this with the 
denominator curve yields the final curve (drawn separately and then multiplied together, below):



An examination of an accurate rendering of this curve will show that the peak occurs at R=1. In 
other words, maximum load power will be obtained when the load resistance is equal to the 
voltage source’s internal resistance. You can try substituting a few values around the peak to 
verify this. For example, given E=1 and Re=1, calculate P for R=.5, 1, and 2:

P.5 = .5/(.52+2•.5+1) = 2/9
P1 = 1/(12+2•1+1) = 2/8 = ¼ 
P2 = 2/(22+2•2+1) = 2/9

You can try this with extremely small variations such as R=.9999 and R=1.0001 and you will not
achieve a value equal to or greater than ¼ Watt. It should also be noted that in the maximum 
power case, because Re=R, the load power and internal power are the same value, and thus the 
load efficiency is only 50% (i.e., only half of all generated power goes to the load with the other 
half being wasted internally). Sometimes we favor efficiency over maximal load power. 

One final item: If we plot the completed power curve using a logarithmic horizontal axis and also
shift the vertical axis to unity, the peak is more apparent and the curve is symmetrical in shape 
rather than lopsided. This reinforces the idea that the ratio of R to Re is what matters.



Refining the Maximal Value of P = R/(R2+2R+1)

While the graphing technique leads to a proper answer, it is incomplete. For the ultimate value 
we can use a little differential calculus. Examining the curve of the function indicates a single 
peak, and thus we may find the corresponding value by taking the first derivative of the function,
setting it to zero (i.e., find the point where the slope goes to zero), and solving for R. There are 
three basic techniques for determining the derivative of the equation: using quotient rule, using 
product rule, and using chain rule. All three will be examined for the sake of completeness.

1. Quotient Rule

The quotient rule states that the derivative of a quotient is 
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This is the most obvious technique to apply (although perhaps not the quickest, as we shall see)
f(x) is R and therefore f′(x) is 1 
g(x) is R2+2R+1 and therefore g′(x) is 2R+2 
Note that for simplicity, g(x) may also be written as (R+1)2

Plugging these values into the quotient formula yields
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This may be simplified to
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For dP/dR to be zero, R must equal 1

QED!

2. Product Rule

The product rule states that the derivative of a product is
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This may be applied if you think of the power equation as the product of R times (R2+2R+1)-1

f(x) is R and therefore f′(x) is 1 
g(x) is (R2+2R+1)-1 Because R2+2R+1 may be written as (R+1)2, this simplifies to ((R+1)2)-1 or 
just (R+1)-2 and therefore g′(x) is -2(R+1)-3

Plugging these values into the product formula yields
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This is equivalent to
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Finding a common denominator and simplifying yields
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For dP/dR to be zero, R must equal 1

QED!

3. Chain Rule

The chain rule states that 
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One way to apply the chain rule is first to rewrite the main equation to remove the numerator R. 
This effectively removes the issues of having a quotient or product. That is, divide through by R 
and

R
R

P
1

2

1




or in a somewhat more convenient form
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Using the chain rule the derivative of this is
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or in “prettier” form
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Multiply through by R2
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Which, for a really anal retentive sort of completeness, can be rewritten as
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This is the precise result obtained using the quotient rule. As before, for dP/dR to be zero, R 
must equal 1

QED!

So, to reiterate, maximum load power will be obtained when the load resistance is equal to the 
voltage source’s internal resistance. Further, at this point the system will be 50% efficient, 
meaning that half of the total generated power goes to the load while the other half is dissipated 
internally in the source.


