DC Circuits Self Test: Series-Parallel and Dependent Sources
Answers are on the final pages

1. For the circuit below, find voltage V_{ab}. Also find the current through the 20 k .

2. For the circuit below, find voltage $V_{b c}$ Also find the current through the 1 k .

3. For the circuit below, find the voltage across the 12 k .

4. For the circuit below, find the voltage across the 5 k .

Answers

1. For the circuit below, find voltage V_{ab}. Also find the current through the 20 k .

By definition, Vab = Va-Vb. By inspection, Va = 10 V. Vb may be found via a voltage divider between the 3 k and the $4 \mathrm{k}|\mid 20 \mathrm{k}$ combo. $4 \mathrm{k}|\mid 20 \mathrm{k}=3.333 \mathrm{k}$
$\mathrm{Vb}=10 \mathrm{~V} * 3.333 \mathrm{k} /(3.333 \mathrm{k}+3 \mathrm{k})=5.263 \mathrm{~V}$
Thus, $\mathrm{Vab}=4.737 \mathrm{~V}$
Knowing Vb , the current through the 20 k is found via Ohm's law. $\mathrm{I}=\mathrm{Vb} / 20 \mathrm{k}=5.263 \mathrm{~V} / 20 \mathrm{k}=.2631 \mathrm{~mA}$
2. For the circuit below, find voltage $V_{b c}$ Also find the current through the 1 k .

By definition, $V b c=V b-V c$. These can be found via Ohm's law once the currents are known. The currents may be determined via
current divider rule and KCL. Treat each series pair as a single resistance (3.2 k left, 23.1 k right)
$I_{\text {left }}=1 \mathrm{~mA} * 23.1 \mathrm{k} /(23.1 \mathrm{k}+3.2 \mathrm{k})=.8783 \mathrm{~mA}(\mathrm{I}$ of $1 \mathrm{k}, \mathrm{also})$
$I_{\text {right }}=1 \mathrm{~mA}-.8783 \mathrm{~mA}=.1217 \mathrm{~mA}$
$\mathrm{Vb}=.8783 \mathrm{~mA} * 2.2 \mathrm{k}=1.932 \mathrm{~V}$
$\mathrm{Vc}=.1217 \mathrm{~mA} * 5.1 \mathrm{k}=.6207 \mathrm{~V}$
$\mathrm{Vbc}=1.932 \mathrm{~V}-.6207 \mathrm{~V}=1.311 \mathrm{~V}$
3. For the circuit below, find the voltage across the 12 k .

Using nodal analysis, define the currents at node b. $I x+200 I x=I_{1 k}$

Ix is the current flowing through point a. Also, Va $=\mathrm{Vb}$. Further, note that $I x=(.1-V b) / 100$.

Expand:
$201(.1-\mathrm{Vb}) / 100=\mathrm{Vb} / 1 \mathrm{k}$
$.201=\operatorname{Vb}(201 / 100+1 / 1 \mathrm{k})$
$\mathrm{Vb}=99.9502735 \mathrm{mV}$
Therefore $I x=(100 \mathrm{mV}-99.9502735 \mathrm{mV}) / 100=.497265 \mathrm{uA}$
And finally, V of $12 \mathrm{k}=12 \mathrm{k} * 200 * .497265 \mathrm{uA}=1.193 \mathrm{~V}$

Crosschecking: I Of $1 \mathrm{k}=\mathrm{Vb} / 1 \mathrm{k}=99.9502735 \mathrm{uA}$ Ix $+200 * I x=99.950265$ uA so KCL checks within round-off error.

FYI: the circuit above is a simplified amplifier using a bipolar junction transistor. The amplification factor is approximately equal to the ratio the right and middle resistors.
4. For the circuit below, find the voltage across the 5 k .

Using nodal analysis, define the currents at node b. $\mathrm{I}_{1 \mathrm{M}}+.01 \mathrm{Vab}=\mathrm{I}_{100}$

Note that $I_{1 \mathrm{~m}}=(1-\mathrm{Vb}) / 1 \mathrm{M}$, and that Vab $=1-\mathrm{Vb}$.
Expand:
$(1-\mathrm{Vb}) / 1 \mathrm{M}+.01(1-\mathrm{Vb})=\mathrm{Vb} / 100$
$1 / 1 \mathrm{M}-\mathrm{Vb} / 1 \mathrm{M}+.01-.01 \mathrm{Vb}=\mathrm{Vb} / 100$
$.010001=\mathrm{Vb}(1 / 1 \mathrm{M}+.01+1 / 100)$
$\mathrm{Vb}=.5200024999 \mathrm{~V}$
Therefore, Vab $=1 \mathrm{~V}-.500024999 \mathrm{~V}=.499975 \mathrm{~V}$
The VCCS $=.01 * .499975 \mathrm{~V}=4.99975 \mathrm{~mA}$
Therefore, V of $5 \mathrm{k}=24.999$ volts.
You can also crosscheck KCL at node b but make sure that you leave many digits of precision because $I_{1 M}$ is very small compared to the other currents (roughly . 5 uA).

FYI: This circuit is a simplified amplifier using an FET (field effect transistor). The amplification factor is approximately equal to the transconductance (here, .01) times the 5 k , the result then divided by the quantity 1 plus the product of transconductance times the 100 ohm. This works out to 25 for this circuit (i.e., 1 volt times 25 yields 25 volts).

