For the circuits below, find their voltage gain and input impedance. Assume $V_{DD}=30V$, $I_{DSS}=16mA$ and $V_{GS(off)}=-4V$ for all circuits. For circuit 1 top left, $R_1=100k$, $R_2=50k$, $R_S=3k$,

 $R_L=2k$.

Cs

For circuit 2 top right, $R_G=1M$, $R_S=250$, $R_D=1k$, $R_L=2k$.

For circuit 3 bottom, V_{EE} =-10V, R_G =500k, R_E =2k, R_D =3k, R_L =4k.

Answers

First, find gm_0 for the device as it is the same for all three circuits. $gm_0 = -2*I_{DSS}/V_{GS(off)}$. $gm_0 = -2*16mA/-4v = 8 mS$.

Circuit 1 top left, voltage divider bias, source follower.

 $Z_{in} = 100k ||50k = 33k$

 $V_G = 30v*50k/(100k+50k) = 10v$ Assume $V_{GS} = -2v$ (i.e., 1/2 of $V_{GS(off)}$) as a starting point. Therefore, $V_S = V_G - V_{GS} = 10v - (-2v) = 12v$ And, $I_D = I_S = V_S/R_S = 12v/3k = 4mA$

Crosscheck: $I_D = I_{DSS} (1 - V_{GS}/_{GS(off)})^2 = 16 \text{mA}(1 - 2v/-4v)^2 = 4 \text{ mA}$ The estimate was perfect. If not, adjust V_{GS} and try again until the two I_D calcs are the same.

 $\begin{array}{l} gm = gm_0 \; \sqrt{(\;I_D/I_{DSS})} = 8mS \; \sqrt{4mA/16mA} = 4mS \\ A_v = gm^*r_s/(1+gm^*r_s) \qquad r_s = 3k ||2k = 1.2k \\ A_v = 4mS^*1.2k/(1+4mS^*2k) = .83 \end{array}$

Circuit 2 top right, self bias common source amplifier.

 $Z_{in} = 1M$

Using a self bias graph, $gm_0 *R_s = 8mS * 250 = 2$, which yields $I_D/I_{DSS} = .38$ $gm = gm_0 \sqrt{(I_D/I_{DSS})} = 8mS \sqrt{.38} = 4.93mS$ $A_v = -gm*r_d$ $r_d = 1k||2k=667$ $A_v = -4.93mS * 667 = -3.29$

Circuit 3 bottom, current source bias common source amplifier.

Zin = 500k

$$\begin{split} I_d &= (V_{\text{EE}}\text{-}.7v)/R_{\text{E}} = 9.3v/2k = 4.65mA\\ gm &= gm_0 \; \sqrt{(\;I_D/I_{\text{DSS}})} = 8mS\; \sqrt{4.65mA/16mA} = 4.31mS\\ A_v &= \text{-}gm^*r_d \qquad r_d = 3k ||4k = 1.71k\\ A_v &= \text{-}4.31mS\; *\;1.71k = \text{-}7.39 \end{split}$$