"How many JFETs could Jay fit if JFETs could fit, Jay?"

For the circuits below, find their voltage gain and input impedance. Assume $V_{D D}=30 \mathrm{~V}$, $\mathrm{I}_{\mathrm{DSS}}=16 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{GS}(\mathrm{fff})}=-4 \mathrm{~V}$ for all circuits. For circuit 1 top left, $\mathrm{R}_{1}=100 \mathrm{k}, \mathrm{R}_{2}=50 \mathrm{k}, \mathrm{R}_{\mathrm{S}}=3 \mathrm{k}$,

Abstract

Answers First, find gm_{0} for the device as it is the same for all three circuits. $\mathrm{gm}_{0}=-2 * \mathrm{I}_{\mathrm{DSS}} / \mathrm{V}_{\mathrm{GS}(\text { off })}$. $\mathrm{gm}_{0}=-2 * 16 \mathrm{~mA} /-4 \mathrm{v}=8 \mathrm{mS}$.

Circuit 1 top left, voltage divider bias, source follower.
$\mathrm{Z}_{\text {in }}=100 \mathrm{k} \| 50 \mathrm{k}=33 \mathrm{k}$
$\mathrm{V}_{\mathrm{G}}=30 \mathrm{v} * 50 \mathrm{k} /(100 \mathrm{k}+50 \mathrm{k})=10 \mathrm{v}$
Assume $\mathrm{V}_{\mathrm{GS}}=-2 \mathrm{v}$ (i.e., $1 / 2$ of $\mathrm{V}_{\mathrm{GS}(\mathrm{fff})}$) as a starting point.
Therefore, $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{v}-(-2 \mathrm{v})=12 \mathrm{v}$
And, $\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S}} / \mathrm{R}_{\mathrm{S}}=12 \mathrm{v} / 3 \mathrm{k}=4 \mathrm{~mA}$
Crosscheck: $\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left(1-\mathrm{V}_{\mathrm{GS}} / \mathrm{GS}(\text { off })\right)^{2}=16 \mathrm{~mA}(1--2 \mathrm{v} /-4 \mathrm{v})^{2}=4 \mathrm{~mA}$ The estimate was perfect. If not, adjust V_{GS} and try again until the two I_{D} calcs are the same.
$\mathrm{gm}=\mathrm{gm}_{0} \sqrt{ }\left(\mathrm{I}_{\mathrm{D}} / \mathrm{I}_{\mathrm{DSS}}\right)=8 \mathrm{mS} \sqrt{ } 4 \mathrm{~mA} / 16 \mathrm{~mA}=4 \mathrm{mS}$
$\mathrm{A}_{\mathrm{v}}=\mathrm{gm} *_{\mathrm{s}} /\left(1+\mathrm{gm} \mathrm{r}_{\mathrm{s}}\right) \quad \mathrm{r}_{\mathrm{s}}=3 \mathrm{k} \mid 2 \mathrm{k}=1.2 \mathrm{k}$
$\mathrm{A}_{\mathrm{v}}=4 \mathrm{mS} * 1.2 \mathrm{k} /(1+4 \mathrm{mS} * 2 \mathrm{k})=.83$

Circuit 2 top right, self bias common source amplifier.
$\mathrm{Z}_{\text {in }}=1 \mathrm{M}$
Using a self bias graph, $\mathrm{gm}_{0} * \mathrm{R}_{\mathrm{S}}=8 \mathrm{mS} * 250=2$, which yields $\mathrm{I}_{\mathrm{D}} / \mathrm{I}_{\mathrm{DSS}}=.38$
$\mathrm{gm}=\mathrm{gm}_{0} \sqrt{ }\left(\mathrm{I}_{\mathrm{D}} / \mathrm{I}_{\mathrm{DSS}}\right)=8 \mathrm{mS} \sqrt{ } .38=4.93 \mathrm{mS}$
$A_{v}=-g m * r_{d} \quad r_{d}=1 k \mid 2 k=667$
$\mathrm{A}_{\mathrm{v}}=-4.93 \mathrm{mS} * 667=-3.29$

Circuit 3 bottom, current source bias common source amplifier.

$\mathrm{Zin}=500 \mathrm{k}$

```
\(\mathrm{I}_{\mathrm{d}}=\left(\mathrm{V}_{\mathrm{EE}}-.7 \mathrm{v}\right) / \mathrm{R}_{\mathrm{E}}=9.3 \mathrm{v} / 2 \mathrm{k}=4.65 \mathrm{~mA}\)
\(\mathrm{gm}=\mathrm{gm}_{0} \sqrt{ }\left(\mathrm{I}_{\mathrm{D}} / \mathrm{I}_{\mathrm{DSS}}\right)=8 \mathrm{mS} \sqrt{ } 4.65 \mathrm{~mA} / 16 \mathrm{~mA}=4.31 \mathrm{mS}\)
\(\mathrm{A}_{\mathrm{v}}=-\mathrm{gm} * \mathrm{r}_{\mathrm{d}} \quad \mathrm{r}_{\mathrm{d}}=3 \mathrm{k} \| 4 \mathrm{k}=1.71 \mathrm{k}\)
\(\mathrm{A}_{\mathrm{v}}=-4.31 \mathrm{mS} * 1.71 \mathrm{k}=-7.39\)
```

