## **Operational Amplifiers**

Assume +/-15VDC supplies and  $A_{o1}$ =200,000.

1. Perform the conversions below.

| $A_v = 40$              | $A'_v =$ | dB    |
|-------------------------|----------|-------|
| $A'_v = -18 \text{ dB}$ | $A_v$ =  |       |
| P = .125 Watts          | P' =     | dBW   |
| V' = -12  dBV           | V =      | Volts |

For the circuit below, sketch the output waveforms given inputs of +3VDC, 0VDC, and -5VDC.



3. Find the voltage gain, input impedance, and output voltage. If  $f_{unity}$  is 2 MHz, find  $f_2$ .



4. For the circuit below, find the voltage gain, input impedance, and output voltage. If slew rate is 2 volts per microsecond, find  $f_{max}$  (power bandwidth) for a 10 volt peak output.



Operational Amplifiers Practice Work Handout 1

Answers

1. Perform the conversions below.

 $A'_{y} = 20 \times \log_{10} A_{y} = 32 \text{ dB}$  (note this is  $2 \times 2 \times 10$ , or 6dB + 6dB + 20dB)  $A_v = 10^{(A'_v/20)} = .125$  (the equation above, "backwards")  $P' = 10 \times \log_{10} (P/P_{ref})$  (where dBW uses 1 W ref) = -9 dBW (or, .5\*.5\*.5 which is -3dB-3dB-3dB)  $V = Vref*10^{(V'/20)}$  (where ref = 1 Volt) = .25 Volts (or, -6dB-6dB, which is .5\*.5=.25)

2. Sketch the output waveforms given inputs of +3VDC, 0VDC, and -5VDC. The reference is -2V so anything larger than this produces positive saturation (about +13 to +14VDC, for inputs one and two) while anything less than -2V produces negative saturation (about -13 to -14VDC, for input three).

3. Find the voltage gain, input impedance, and output voltage. If funity is 2 MHz, find  $f_2$ .

 $Z_{in}$  is set by the 33k.  $A_v = 1 + R_f / R_i = 1 + 10k / 2k = 6.$  $f_2 = f_{unity}/A_{noise} = 2MHz/6 = 333kHz$ . (note  $A_n = A_v$  for this amplifier)

4. Find the voltage gain, input impedance, and output voltage. If slew rate is 2 volts per microsecond, find  $f_{max}$  (power bandwidth) for a 10 volt peak output.

 $Z_{in}$  is set by  $R_i = 10k$ .  $A_v = -R_f/R_i = -80k/10k = -8$ .  $V_{out} = V_{in} \star A_v = .1V \star (-8) = .8$  volts inverted. f<sub>max</sub> = SR/(2\*pi\*V<sub>peak</sub>) = 2E6/(2\*pi\*10V) = 31.8 kHz (note 2 V/uSec = 2E6 V/Sec)