Assume +/-15VDC supplies and $A_{\circ 1}=200,000$.

1. Perform the conversions below.
$A_{\mathrm{v}}=40$
$A^{\prime}{ }_{\mathrm{V}}=$
$d B$
$A^{\prime}{ }_{v}=-18 \mathrm{~dB}$
$A_{\mathrm{v}}=$
$\mathrm{P}=.125$ Watts
$P^{\prime}=\quad d B W$
$\mathrm{V}^{\prime}=-12 \mathrm{dBV}$
$\mathrm{V}=$
Volts
2. For the circuit below, sketch the output waveforms given inputs of $+3 V D C, 0 V D C$, and $-5 V D C$.

3. Find the voltage gain, input impedance, and output voltage. If $f_{\text {unity }}$ is 2 MHz , find f_{2}.

4. For the circuit below, find the voltage gain, input impedance, and output voltage. If slew rate is 2 volts per microsecond, find $f_{\max }$ (power bandwidth) for a 10 volt peak output.

5. Perform the conversions below.
$A^{\prime}{ }_{v}=20 * \log _{10} A_{v}=32 \mathrm{~dB}$ (note this is $2 * 2 * 10$, or $6 \mathrm{~dB}+6 \mathrm{~dB}+20 \mathrm{~dB}$)
$A_{v}=10^{\wedge}\left(A^{\prime}{ }_{v} / 20\right)=.125$ (the equation above, "backwards")
$P^{\prime}=10 * \log _{10}\left(P / P_{\text {ref }}\right)$ (where $d B W$ uses 1 W ref) $=-9 \mathrm{dBW}$
(or, .5*.5*.5 which is $-3 \mathrm{~dB}-3 \mathrm{~dB}-3 \mathrm{~dB}$)
$\mathrm{V}=$ Vref*10^($\left.\mathrm{V}^{\prime} / 20\right)$ (where ref $=1$ Volt) $=.25$ Volts
(or, $-6 \mathrm{~dB}-6 \mathrm{~dB}$, which is . $\mathrm{5}^{*} .5=.25$)
6. Sketch the output waveforms given inputs of +3VDC, OVDC, and -5VDC. The reference is $-2 V$ so anything larger than this produces positive saturation (about +13 to +14 VDC , for inputs one and two) while anything less than -2 V produces negative saturation (about -13 to -14VDC, for input three).
7. Find the voltage gain, input impedance, and output voltage. If $f_{\text {unity }}$ is 2 MHz , find f_{2}.
$Z_{\text {in }}$ is set by the $33 k$.
$A_{\mathrm{v}}=1+\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{\mathrm{i}}=1+10 \mathrm{k} / 2 \mathrm{k}=6$.
$\mathrm{f}_{2}=\mathrm{f}_{\text {unity }} / \mathrm{A}_{\text {noise }}=2 \mathrm{MHz} / 6=333 \mathrm{kHz} . \quad\left(\right.$ note $A_{\mathrm{n}}=A_{\mathrm{v}}$ for this amplifier)
8. Find the voltage gain, input impedance, and output voltage. If slew rate is 2 volts per microsecond, find $f_{\max }$ (power bandwidth) for a 10 volt peak output.
$Z_{i n}$ is set by $R_{i}=10 k$.
$A_{\mathrm{v}}=-\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{\mathrm{i}}=-80 \mathrm{k} / 10 \mathrm{k}=-8$.
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{in}} * \mathrm{~A}_{\mathrm{V}}=.1 \mathrm{~V} *(-8)=.8$ volts inverted.
$\mathrm{f}_{\text {max }}=\mathrm{SR} /\left(2 * \mathrm{pi} * \mathrm{~V}_{\text {peak }}\right)=2 \mathrm{E} 6 /(2 * \mathrm{pi} * 10 \mathrm{~V})=31.8 \mathrm{kHz}$
(note $2 \mathrm{~V} / \mathrm{uSec}=2 \mathrm{E} 6 \mathrm{~V} / \mathrm{Sec}$)
