## Op Amps Practice 3

1. For the circuit below, draw the input-output transfer curve. Indicate the gains (slopes) and breakpoint voltages.  $R_i=10k$ ,  $R_f=60k$ ,  $R_1=120k$ ,  $R_2=40k$ ,  $R_{load}=22k$ ,  $D_1=D_2=3.3V$ ,  $D_3=D_4=5.1V$ 



2. Determine the frequency of oscillation of the circuit below. Ri=10k, Rf=15k, Rd=8k, R=20k, C=.1uF



3. For the integrator below, determine  $f_{\text{low}}$  and the output if the input is a .2 volt peak sine wave at 500 Hz. Ri=10k, Rf=200k, C=50nF



4. For the differentiator below, determine  $f_{\rm high}$  and the output if the input is a .1 volt peak sine wave at 1000 Hz. Rf=50k, Cf=100pF, C=50nF



## Answers

1. Base gain is -60k/10k = -6. First output breakpoint is

2. f = 1/(2\*pi\*R\*C) = 1/(2\*pi\*20k\*.1uF) = 79.6 HzNote that the max forward gain is 1 + (15k+8k)/10k = 3.3, which is sufficient to start oscillation for a Wien bridge oscillator (need>3). As the signal increases, the diodes begin to conduct thus dropping the effective gain to 3 to achieve a stable, unclipped output.

3.  $f_{low}=1/(2pi*200k*50nF)=15.9$  Hz. Amplitude of output is -.2V\*1/(10k\*50nF)/(2pi500)=-.127V ( $V_{out}=.127cos(2pi500t)$ )

4. f<sub>high</sub>=1/(2pi\*50k\*100pF)=31.8kHz. Amplitude of output is
-.1V\*(50k\*50nF)\*(2pi1000)= -1.57V (V<sub>out</sub>=-1.57cos(2pi1000t))