Op Amps Practice 3

1. For the circuit below, draw the input-output transfer curve. Indicate the gains (slopes) and breakpoint voltages. $\mathrm{R}_{\mathrm{i}}=10 \mathrm{k}$, $R_{f}=60 \mathrm{k}, \mathrm{R}_{1}=120 \mathrm{k}, \mathrm{R}_{2}=40 \mathrm{k}, \mathrm{R}_{\text {load }}=22 \mathrm{k}, \mathrm{D}_{1}=\mathrm{D}_{2}=3.3 \mathrm{~V}, \mathrm{D}_{3}=\mathrm{D}_{4}=5.1 \mathrm{~V}$

2. Determine the frequency of oscillation of the circuit below. Ri=10k, Rf=15k, Rd=8k, R=20k, C=.1uF

3. For the integrator below, determine $f_{\text {low }}$ and the output if the input is a . 2 volt peak sine wave at 500 Hz . Ri=10k, Rf=200k, $\mathrm{C}=50 \mathrm{nF}$

4. For the differentiator below, determine $f_{\text {high }}$ and the output if the input is a . 1 volt peak sine wave at 1000 Hz . Rf=50k, $C f=100 \mathrm{pF}, \quad \mathrm{C}=50 \mathrm{nF}$

Answers

1. Base gain is $-60 k / 10 k=-6$. First output breakpoint is
2. $\mathrm{f}=1 /(2 * \mathrm{pi} * \mathrm{R} * \mathrm{C})=1 /(2 * \mathrm{pi} * 20 \mathrm{k} * .1 \mathrm{uF})=79.6 \mathrm{~Hz}$ Note that the max forward gain is $1+(15 k+8 k) / 10 k=3.3$, which is sufficient to start oscillation for a Wien bridge oscillator (need>3). As the signal increases, the diodes begin to conduct thus dropping the effective gain to 3 to achieve a stable, unclipped output.
3. $\mathrm{f}_{\text {low }}=1 /(2 \mathrm{pi} * 200 \mathrm{k} * 50 \mathrm{nF})=15.9 \mathrm{~Hz}$. Amplitude of output is $-.2 \mathrm{~V} \star 1 /$ $(10 \mathrm{k} * 50 \mathrm{nF}) /(2 \mathrm{pi} 500)=-.127 \mathrm{~V} \quad\left(\mathrm{~V}_{\text {out }}=.127 \cos (2 \mathrm{pi} 500 \mathrm{t})\right)$
4. $f_{\text {high }}=1 /(2 \mathrm{pi} * 50 \mathrm{k} * 100 \mathrm{pF})=31.8 \mathrm{kHz}$. Amplitude of output is
$-.1 \mathrm{~V} *(50 \mathrm{k} \star 50 \mathrm{nF}) \star(2 \mathrm{pi} 1000)=-1.57 \mathrm{~V} \quad\left(\mathrm{~V}_{\text {out }}=-1.57 \cos (2 \mathrm{pi} 1000 \mathrm{t})\right)$
